研究生: |
史嘉章 Chia-Chang Shih |
---|---|
論文名稱: |
發展二階層試題以探討國高中學生氣體迷思概念 Developing a two-tiers test to diagnose different types of misconceptions of gas among secondary school students |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 243 |
中文關鍵詞: | 迷思概念 、中學生 、氣體 、概念 、氣壓 、擴散 、二階層試題 |
英文關鍵詞: | misconception, secondary school, gas, concept, air pressure, diffusion, two tiers |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:43 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究依據氣體動力論模型發展二階層(two tiers)試題做為診斷性工具,探究國、高中學生在不同年級對有關氣體的各種概念所抱持的迷思概念(misconception),並對其產生的迷思概念嘗試以不同角度採取適當的類型加以分類,並試圖找尋其概念背後的心智模式及概念形成的成因。
此氣體概念二階層試題診斷工具的編製流程,首先以開放式紙筆問卷引出對台北市國、高中各兩個班學生對氣體概念的各種想法,並在學生答案分析後做適當類型的歸類,然後在各類型迷思概念的學生,實施半結構性晤談,以了解學生真正的想法來修正研究者歸類的最初假設,及補充開放式紙筆問卷所未發現的盲點。不斷重複上述步驟將試題做更深入的修正分析及最後由學科專家審查確認,以發展一份具有信效度的氣體迷思概念二階層試題。
本研究的研究對象為台北市立某高中一、二年級學生共302人及台北市立某國中一、二、三年級共368人。
以氣體迷思概念二階層試題實測結果發現:1學生對氣體粒子本質的瞭解隨年級成正相關。 2大部分的學生對於「氣體壓力是由於氣體粒子碰撞模式所產生的」並不了解,認為氣體壓力是氣體活性大小、分子量大小、擠壓程度等不同模式所產生。 3學生對於兩不同氣體擴散時運動速率,認為壓力相同時運動速率就會相同,並不了解分子量大小不同時速率快慢不同的關係。 4 學生認為氣體的活性就是氣體的運動快慢程度,並非化學上所定義的氧化力的大小,隨年級升高此迷思降低。本研究結果所呈現的學生迷思概念類型及其比例可做為教師教學時的參考資料庫。
This research is based on “Microscopic Gas Model” to develop a two-tier test that intend to diagnose different types of misconceptions of gas among secondary school students at different grades and figure out students’ mental model behind each type of misconception.
The respondents of this research are 302 tenth and eleventh grade school students and 368 seventh, eighth, and ninth grade students who study in the same junior high school in Taipei.
The major findings of this study are summarized as follows:1. The students’ understanding about gas properties is positively correlated with students’ grades. 2. The students’ perceptions of gas pressure are misled. Most students thought that gases exert pressure through different gas volatilities, molecular weight, and the degree of push. However, gases exert pressure because their particles constantly move around and collide with the walls of the container holding the gas. 3. In terms of motions of two types of gases, the students perceive that the gases’ velocities are equal under the same pressure, but they have not got the idea that velocities are also affected by molecular weight. 4. The students thought that gas volatility represents its speed of motion, but in fact, gas volatility represents its tendency of oxidation. This misconception becomes less serious as the students with higher grades. 5. As the grade gets higher, it is not necessary to develop better conceptions with the dynamic nature.
This research provides an empirical foundation for next step large-scale study, which could result in better understandings of the types of misconceptions and the spread of each type held by different levels of ages. Teachers might furthermore take research results as reference to clarify students’ misconceptions revealed by the study.
中文部分:
宗薩欽哲仁波切(1999):佛教的見地與修行,馬君美譯(民88)台北;眾生出版社
李世勳(1999):高中學生的辯護與反駁之研究-偽氣體理論。高師大科教所碩士論文(未出版)。
邱美虹(2000):評量學生科學概念之理解:預測-觀察-解釋與繪圖法之評介。八十九年度「自然科學概念學習研究工作坊」會議手冊。
邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
洪振方(1987):學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學化學研究所碩士論文(未出版)。
洪裕宏(1998)神經網路與哲學。 <<心與腦>>台北:心理出版社
郭重吉(1980):學生科學知識認知結構的評估與描述,彰師學報,第一期,第280-319頁。
郭重吉(1988):從認知觀點探討自然科學的學習。教育學院學報,第十三期,351-378。
郭重吉(1989):利用晤談方式探查國中學生對重要物理概念的另有架構。發表於第五屆科學教育學術研討會。
郭重吉(1990):學生科學知識認知結構的評估與描述。彰師學報,l,279-320。
黃湘武、黃寶鈿(1987):學生推理能力輿概念發展之研究。認知與學習研討會專集。台北市行政院國家科學委員會。
黃寶鈿、黃湘武(1985):學生空氣概念:粒子性質及動力平衡。七十四年科學教育學術研討會論文彙編。
許嘉玲(1997);浮力學習之概念改變,國立台灣師範大學科學教育研究所碩士論文。
陳雅芬(2001);以凱利方格法探討學生對於氣體概念的理解,國立台灣師範大學科學教育研究所碩士論文。
鄭志鵬(1998):探究高中學生之氣體概念及相關粒子概念。國立台灣師範大學化學研究所碩士論文(未出版)。
英文部分:
Anderson, B. (1992). Pupils conceptions of matter and is transformation (age l2-16) ﹒In P. L. Lijnse, P. Licht, W. de Vos, and A. J. Waarlo, Relating Macroscopic Phenomena to Microscopic Particles. A central Problem in Secondary Science Education Netherlands:University of Utrecht
Beck, J. E. (1987). Participant change in sensitivity training groups – Repertory grid measures of change in participants’ construct systems. Small Group Behavior, 18(3), p336-355.
Benson, D. L., Wittrock, M. C. & Baur, M. E. (1993). Students’ Preconceptions of the Nsture of Gases. Journal of Research in Science Teaching, 30,587,597.
Bezzi, A. (1996). Use of Repertory Grids in Facilitating Knowledge Construction and reconstruction in Geology. Journal of Research in Science teaching, 33(2), p179- 204.
Bezzi, A. (1999). What is thing called geoscience? Epistemological dimensions elicited with Repertory Grid and their implications for scientific Iiteracy. Science Education, 83:675-700.
Borphi, L., de Ambrrosis, A., Massara, C. I., Grossi, M. G.& Zoppi, D. (1988). Knowledge of Air: A Study of Children aged between 6 and 8 years. International Journal in Science Education, 10(2), 179-188.
Brook, A., Briggs, H. ,& Driver, R. (1984) Aspects of Secondary Students’ Understanding of the Particulate Nature of Matter. Children Learning in Science Project. Center for Studies in Science and Mathematics Education, The University of Leeds.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intellingence, Vol,. 1., Hillsdale, NJ: Lawrence Erlbaum Assoceates.
Chi, M.T.H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in science.
Chi, M.T.H. (1993). Analyzing verbal data to represent knowledge: A pratical guide. Unpulbished manuscript. Learning Research and Development Center University of Pittsburgh, Pittsburgh, PA.
Chi, M.T.H. Slotta, J..D., de Leeuw, N.A. (1994). Form things to processes: A theory of condeptual change for learning science concepts. Learning and Instruction, 4, pp.27-43.
Chi, M.T.H., Slotta, J.D. & de Leeuw, N.A.(1992). Form things to processes: A theory of conceptual change for learning science concepts. Preparation from the A. F. Mellon Foundation.
Clough,E.E., & Driver, R. (1986). A study of consistency in the use of students’ conceptual framework across different task contexts. Science Education, 70(4), p473 -496.
Corporaal, A. H. (1991). Repertory grid research into cognitions of prospective primary school teachers. Teaching & Teacher Education, 7(4), p315-329.
Cronin-Jones, L. & Shaw, Jr. E. L. (1992) The influence of method instruction on the beliefs of preservice elementary and secondary science teachers: preliminary comparative analyses. School Science and Mathematics, 92(1), p14-22.
Cunliffe, A. (1994). How do science teachers become professionals? Implications of case studies of two beginning teachers. Paper presented at the Annual Meeting of the Australian Education Association, Brisbane, Queensland, Australia.
Cunliffe, A. (1995). How Do My students Believe They Learn? Paper presented at the Annual Conference of the Australian Science Teachers’ Association, Australian.
De Berg, K. C. & Treagust, D. H. (1993). The Presentations of Gas Properties in Chemistry Textbooks and as reported by Science Teachers. Journal of Research in Science Teaching, 30(8), 871-882.
De Berg, K. C. (1989). The Emergence of Quantification in the Pressure-Volume Relationship for Gases: A Textbook Analysis. Science Education, 73(2), 115-134.
De Berg, K. C. (1990). The Historical Development of the Pressure-Volume Law for Gases. The Australian Science Teachers Journal, 36(1), 14-20.
De Berg, K. C. (1992). Students’ Thinking in Relation to Pressure-Volume Changes of a Fixed Amount of Air: The Semi-quantitative Context. International Journal of Science Education, 14(3), p295-303.
De Berg, K. C. (1995a). Revisting the Pressure-Volume Law in History- What Can It Teach Us About the Emergence of Mathematical Relationships in Science? Science & Education, 4, p47-64.
De Berg, K. C. (1995b). Student Understanding of the Volume, Mass, and Pressyre of air Within a Sealed Syringe in different States of Compression. Journal of Research in Science Teaching, 32(8), 871-884.
Doran, R. L. (1972). Misconceptions of Selected Science Concepts Held by Elementary School Students. Journal of Research in Science Teaching, 9(2), p127-137.
Driver, R. & Easley, J.A.(1978). Pupils and paradigms.: A review of literature related to concept development in adolescent science students. Studies in Science Education, 64,pp.323-338.
Driver, R. (1985). Beyond Appearances: The Conservation of Matter Under Physical and Chemical Transformations. In R. Driver, E. Guesne & A. Tiberghien (Eds) Children’s Ideas in Science. (p145-169). Open University press.
Duchl, D. H. (1991). Epistemological Perspectives on Conceptual Changes: Implications for Educations for Educational Practice. Journal of Research in Science Teaching, 28(9), p839-858.
Duit, R. (1991). 學生概念架構:學習科學成果。王美芬譯(民85)。出自中譯(科學學習心理學)。台北:心理出版社。
Engel, M. E. (1981). The Development of Understanding Selected Aspects of Pressure, Heat and Evolution in Pupils Ages Between 12 and 16 Years. Unpublished, Ph.D. Thesis, University of Leeds.
Fetherstonhaugh, T. 91994). Using the repertory grid to probe students’ ideas about energy. Research in Science & technological Education, 12(2), p117-127.
Fisher,B., McSweeney, P. & Cohen, M. R. (1989). Children’s conceptions of the seasons: A comparison of three interview techniques. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, San Francisco.
Gabel, D. L. Sherwood, R. D. & Enochs, L. (1984). Problem-solving Skills of High School Chemistry Students. Journal of Research in Science Teaching, 21, p‘-233.
Gabel, D.L. etc.(1987). Understanding the Particulate Nature of Matter. Journal of Chemical Education, 64(8), 685-697.
Haider, A. (1997). Prospective Chemistry Teachers’ Conceptions of the Conservation of Matter and Related Concepts. Journal of Research in Science teaching, 34(2), 181-197.
Hargreaves, D. J., Galton, M. J. & Robinson, S. (1996). Teachers’ assessments of primary children’s classroom work in the creative arts. Educational Research, 38(2), P199-211.
Hwang, G. J. (1994). Knowledge elicitation and integration from multiple experts. Journal of Information Science and engineering, 10, p99-109.
Johnstone, K. (1992). Students’ Responses to an Active Learning Approach to teaching the Particulate Nature of Matter. In P. L. Lijnse, P, Licht, W. de Vos and A. J. Waarlo(eds), Relating Macroscopic Particles. A Central Problem in Secondary Science Eduacation (Netherlands: University of Utrecht).
Jones, L. C. & Shaw, Jr. E. L. (1992). Sixth form a level students’ perceptions of the difficulty, intellectual freedom, social benefit and interest of science and arts subjects. Research in Science & Technological Education. 12(1), 43-52.
Kelly, G.A. (1955). The psychology of personal constructs. Norton, New York.
Kokkotas, P., Vlachos, I., Koulaidis, V.(1998). Teaching the Topic of the Partculate Nature of Matter in Prospective Teacher’’s Training Courses. International Journal of Science Education, 20(3), p291-303.
Koubek, R. J. & Mountjoy, D. N. (1991). Toward a model of knowledge structure and a comparative analysis of knowledge structure measurement techniques. ERIC Document Reproduction Service No, ED 339719.
Lai, S. T., Yang, C.C. & Lien, C.C. (1997). A repertory grid approach for software components classification and retrieval. Journal of the Chinese Institute of Engineers, 20(2), p117-130.
Lamber, R., et al. (1997). The repertory grid as a qualitative interviewing technique for use in survey development. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.
Latta, G. F. & Swigger, K. (1992). Validation of the repertory grid for use in modeling knowledge. Journal of the American Society for Information Science, 43(2), p9115-129.
Lynch, P. P. (1996). Students’ alternative Frameworks for the Nature of Matter: a Cross-culture Study of Linguistic and Cultural Interpretation. International Journal in Science Education, 18(6) , p743-752.
Mas, C. J. F., Perez, J. H. & harris, H. H. (1987). Parallels Between Adolescents’ Conception of Gases and the History of Chemistry. Journal of Chemistry Education, 64, p616-618.
Maskill,R (1997). Young Pupils Ideas About the Microscopic Nature of Matter in Three Different European Countries. International Journal of Science Education, 19(6), p631-645.
Middleton, J. A. (1992). Teachers’ vs. students’ beliefs regarding intrinsic motivation in the mathematics classroom: A personal constructs approach. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco.
Middleton, J. A., Littlefield, J. & Lehrer, R. (1992). Gifted education. Gifted Child Quarterly, 36(1), p38-44.
Morine-Dreshimer, G., Saunders, S., Artiles, Artiles, A. J., Mostert, M. P., Tankersley, M., Trent, S. C. & Nuttycombe, D. G. (1992). Choosing among alternatives for tracing conceptual chance. Teaching & Teacher Education. 8(5/6), p471-483.
Munby, H (1984). A qualitative approach to the study of a teacher’s beliefs. Journal of Research in science Teaching, 21(1), p27-38.
Nersessian, N. (1989). Conceptual change in science and in science education. Syntheses, 80(1),p163-184.
Noh, T. & Scharmann, L. C.(1997). Instructional Influence of a Molecular-Level Pictorial Presentation of Matter of Students’ Conceptions and Problem-Solving Ability. Journal of Research in Science Teaching, 34(2), p199-217.
Novick, S. & Nussbaum, J.(1978). Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study. Science Education, 62(3), p273-281.
Novick, S., Nussbaum, J.(1981) Pupils’ Understanding of the Particulate Nature of Matter: A Cross-Age Study. Science Education, 65(2), p187-196.
Nusbaum, J., & Novick, S.(1982). Alternative frameworks conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 60, pp.535-550.
Owens, John E. (1988). Preservice Secondary mathematics teachers’ constructs of mathematics and mathematics teaching. Paper resented at the Annual Meeting of the American Educational research Association, New Orleans.
Perkins, D.N., & Simmons, R. (1988). Patterns of misunderstanding: An integrative model for science, math, and programming. Review of Educational Research, 58(3), p303-326.
Posner, G.J. & Strike, K. A. (1985). A Conceptual Change View of Learning and Understanding. In L. H. T. West & A.L. Pines (Eds.), Cognitive structure and conceptual change. New York: Academic Press, INC., pp.211-232.
Posner, G.J., Strike, K. A., Hewson, P.W. & Gertzog, W.A.. Accommodation of a Scientific Conception: toward a theory of Conceptual Change. S.E., 66(22), pp.211-227.
Reiner,M.(1991). Patterns of thought on light, and underlying commitments. In R. Duit, F. Goldberg, & H. Niedderer(Eds.) Research in Physics Learing: Theoretical Issues and Empirical Studies (p.99-109.). Kiel, Germany: IPN, University of Kiel.
Rollnick, M.S. & Rutherford, M.(1993). The Use of a Conceptual Change Model and Mixed Language Strategy for Remediating Misconceptions on Air Pressure. International Journal of Science Education, 15(4),p 363-381.
Selley, N. J. (1981). Children’s Understanding of Atoms and Molecules, (mimeograph). Kingston: Kingston Polytechnic.
Sere, M. (1987). A Study of Some Frameworks Used by Pupils aged 11-13 years in the Interpretation of Air Pressure. European Journal of Science Education, 4(3), p299-309.
Sere, M. G. (1987). The Gaseous State. In Driver, R. Guesne, E. & tiberghien, A. (Eds.), Children’s Ideas in Science. UK.: Open University Press. Shapiro, B. L. (1987). What children bring to light: A study of personal orientation to science learning. ERIC Document Reproduction Service No, ED 306137.
Shaw, M. & Gaines, B. (1995). Comparing Conceptual Structures: Consensus, Conflict, Correspondence and Contrast. Http://Ksi.cpsc.calgary.ca/articles.
Shepherd, D. L. & Renner, J. W. (1982). Student Understandings and Misunderstanding of State of Matter and Density Changes. School Science and Mathmatics, 82(8),p 650-665.
Stavy, R. (1990). Children’s Conception of Changes in the State of Matter: from Liquid (or Solid) to Gas. Journal of Research in Science Teaching, 27(3), p247-266.
Stead, K.(1983). Insights into students’ outlooks on science with personal constructs. Research in Science Education, 13,p163-176.
Stepans, J.I., Dyche S., & Beiswenger, R.(1986). Misconceptions die hard. Science Teacher, 53(6) pp.65-69.
Strike, K.A. & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl R.J. Hamilton (Eds.), Philosophy of science, Cognitive psychology, and educational theory and practice. Albany, NY:SUNY press,pp.147-176.
Strike, K.A. & Posner, G.J. (1982).Conceptual change and science teaching. Eur. J. Sci. Educ.. 4,3,pp.231-240.
Tytler, R. (1998). Children’s Explanation of Air Pressure Generated by Small Group Activities. Research in Science Education, 22,p393-402.
Vosniadou, S. & Brewer, W. F. (1987). Theories of Knowledge Restructuring in development. R.E.S.T., 57(1), 99.51-67.
Walker, R. M. (1984). Construct systems of seventh-grade students and their relationships to reading achievement. ERIC Document Reproduction Service No, ED 264532.
Watson, J., McEwen, A. & Dawson, S. (1994). Sixth form a level students’ perceptions of the difficulty, intellectual freedom, social benefit and interest of science and arts subjects. Research in Science & Technological Education 12(1),p43-52.
Williamson, V. M., Abraham, M., R. (1995) The Effects of computer Animation on the Particulate mental Models of College Chemistry Students. Journal of Research in Science Teaching, 32(5), p521-534.