Author: |
劉宸宇 Liu, Chen-Yu |
---|---|
Thesis Title: |
三價鋁金屬與二價可大量合成之MOF對於揮發性有機物的除去效能比較 Comparison of removal efficiency to VOC by using scalable divalent MOF and trivalent Al-MOF |
Advisor: |
林嘉和
Lin, Chia-Her |
Committee: |
呂家榮
Lu, Chia-Jung 賴宇倫 Lai, Yu-Lun 李承軒 Lee, Cheng-Shiuan |
Approval Date: | 2021/06/08 |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2021 |
Academic Year: | 109 |
Language: | 中文 |
Number of pages: | 107 |
Keywords (in Chinese): | 金屬有機框架結構 、揮發性有機物 、吸附劑 、毒物吸附 、氣相動態吸附 、氣相靜態吸附 |
Keywords (in English): | MOFs, VOCs, Absorbents, Dynamic adsorption, Static adsorption |
Research Methods: | 實驗設計法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202100990 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 197 Downloads: 25 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
論文透過高孔洞性金屬有機骨架(Metal-Organic Frameworks, MOFs)與其高分子混摻顆粒進行揮發性有機物在不同的測試下的吸附效率。所選擇的MOFs包含了可大量合成的二價金屬MOFs : HKUST-1、ZIF-8;具有中心金屬含氧鍊狀結構的鋁三價MOFs : MIL-68、A520及CAU-10等,進一步將多種MOFs進行和高分子聚乙烯醇(PVA)進行混摻,找出孔隙率最佳的比例進行揮發性有機物的吸附測試。在性質的鑑定上,以粉末X-ray繞射鑑定混摻後的MOF@PVA高分子顆粒和所使用的MOF比較繞射圖譜結構差異;傅立葉轉換紅外線光譜儀(FTIR)測試MOFs與PVA高分子是否有配位或鍵結產生官能基;場發射式掃描電子顯微鏡(FE-SEM)進行混摻顆粒橫切面的微觀觀察;熱重分析儀(TGA)測定顆粒以及粉體的結構穩定性。結果成功配置出10%、20%、30% PVA/MOF混摻比例的高分子顆粒,且10% MIL-68@PVA 10%顆粒有著高達0.86 g/g的醋酸、0.62 g/g的丙酮、0.53 g/g的異丙醇及0.7 g/g的甲苯氣體吸附量,對比於市售的活性碳、沸石吸附劑都有著1.5~3倍的吸附優越性,同時擁有極佳的循環使用效率。而在低濃度的甲苯動態吸附測試結果中,10% HKUST-1@PVA顆粒卻有著比10% MIL-68@PVA顆粒更好的甲苯吸附效率,總吸附量接近3倍差距,並且透過動力學模型的模擬成功找出了較適合解釋在低濃度動態下微孔MOFs對甲苯的吸附機理,表明在高濃度甲苯環境如工廠中更適合以MIL-68@PVA顆粒作為吸附劑,而低濃度工業及家庭廢氣則更適合小孔徑的HKUST-1@PVA。
This paper mainly uses Metal-Organic Frameworks (MOFs) and PVA mixed with MOFs particles for testing their ability in Volatile Organic Compounds (VOCs) adsorption capacity. The selected MOFs include divalent metal MOFs that can be synthesized in large quantities: HKUST-1 and ZIF-8; aluminum trivalent MOFs with a central metal oxygen-containing chain structure : MIL-68, A520 and CAU-10. A variety of MOFs were mixed with polymer polyvinyl alcohol (PVA) to find out the best ratio for the adsorption test of volatile organic compounds. In the identification of properties, powder X-ray diffraction (PXRD) was used to identify the difference in the diffraction pattern between the MOF powder and MOF@PVA Beads; Fourier transform infrared spectroscopy (FTIR) tested whether new functional group produced by interaction between MOFs and PVA; field emission scanning electron microscope (FE-SEM) was used for observating the cross-section of mixed particles and the thermogravimetric Analyzer (TGA) measures the structural stability of particles and powders. As a result, MOF@PVA Beads with 10%, 20%, and 30% PVA/MOF blending ratios were successfully configured, and the 10% MIL-68@PVA particles have up to 0.86 g/g of acetic acid, 0.62 g/g of acetone, 0.53 g/g of isopropanol and 0.7 g/g of toluene gas adsorption capacity, at least 1.5~3 times better than commercially available activated carbon and zeolite adsorbents and has excellent recycling efficiency.
In the low concentration of toluene dynamic adsorption test results, 10% HKUST-1@PVA Beads have a better toluene adsorption efficiency than 10% MIL-68@PVA up to 3 times gap. Through the simulation of the kinetic model, we found that it is more suitable to explain the adsorption mechanism of toluene by the microporous MOFs under the low concentration dynamic.
(1) Tranchemontagne, D.; Hunt, J.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron. 2008, 64, 8553-8564.
(2) Jambovane, S. R.; Nune, S. K.; Kelly, R. T.; McGrail, B. P.; Wang, Z.; Nandasiri, M. I.; Katipamula, S.; Trader, C.; Schaef, H. T. Continuous, One-Pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors. Sci. Rep. 2016, 6, 36657.
(3) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal− organic porous materials. J . Am. Chem. Soc. 2009, 131, 7524.
(4) Tanabe, K. K.; Cohen, S. M. Modular, Active, and Robust Lewis Acid Catalysts Supported on a Metal− Organic Framework. Inorg. Chem. 2010, 49, 6766.
(5) Tanabe, K. K.; Wang, Z.; Cohen, S. M. Systematic functionalization of a metal− organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 2008, 130, 8508.
(6) Tanabe, K. K.; Cohen, S. M. Engineering a metal–organic framework catalyst by using postsynthetic modification. Angew. Chem. Int. Ed. 2009, 48, 7424.
(7) Wang, Z.; Tanabe, K. K.; Cohen, S. M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg. Chem. 2009, 48, 296.
(8) Wang, Z.; Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1315.
(9) Yu, L. Q.; Huang, R. D.; Xu, Y. Q.; Liu, T. F.; Chu, W. C.; Hu, W. Syntheses, structures and properties of novel 3D lanthanide metal-organic frameworks with paddle-wheel building blocks. Inorganica. Chimica. Acta. 2008, 361, 2115.
(10) Pan, L.; Adams, K. M.; Hernandez, H. E.; Wang, X.; Zheng, C.; Hattori, Y.; Kaneko, K. Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. J. Am. Chem. Soc. 2003, 125, 3062
(11) Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1248.
(12) Gandara, F.; Puebla, E. G.; Iglesias, M.; Proserpio, D. M.; Snejko, N.; Monge, M. A. Controlling the structure of arenedisulfonates toward catalytically active materials. Chem. Mater. 2009, 21, 655.
(13) Perles, J.; Snejko, N.; Iglesias, M.; Angeles Monge, M. 3D scandium and yttrium arenedisulfonate MOF materials as highly thermally stable bifunctional heterogeneous catalysts. J. Mater. Chem. 2009, 19, 6504.
(14) Jhung, S. H.; Khan, N. A.; Hasan, Z. Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption. CrystEngComm. 2012, 14, 7099.
(15) Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas, R. M.; Braunbarth, C. M.; Toby, B. H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 2001, 412, 720–724
(16) Lin, R.‐B.; Xiang, S.; Zhou, W. B. Microporous metal-organic framework materials for gas separation. Chen, Chem. 2020, 6, 337-363
(17) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295, 469
(18) Greathouse, J. A.; Allendorf, M. D. The Interaction of Water with MOF-5 Simulated by Molecular Dynamics. J. Am. Chem. Soc. 2006, 128, 10678-10679
(19) So, P.; Tang, P. H.; Liao, B. H.; Nadaraj, S.; Chen, H. T.; Lin, C. H. Sustainable scale-up synthesis of MIL-68 (Al) using IPA as solvent for acetic acid capture. Microporous Mesoporous mater. 2021, 110954
(20) Rallapalli, P.; Prasanth, K. P.; Patil, D.; Somani, R.S.; Jarsa, R. V.; Bajaj, H. C. J. A high-pressure/supercritical method to dry silica-based materials prepared by biomimetic aqueous sol-gel methods. Porous Mater. 2011, 18, 205
(21) Barthelet, K; Marrot, J.; Férey, G.; Riou, D. VIII(OH){O2C–C6H4–CO2}.(HO2C–C6H4–CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology : reticular synthesis with infinite inorganic building blocks. Chem. Commun. 2004, 520-521
(22) Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle F.; Audebrand, N.; Latroche, M. The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorg. Chem. 2008, 47, 24, 11892–11901
(23) Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J.-M.; Morcrette, M.; Tarascon, J.-M.; Maurin, G.; Férey, G. Eur. J. Synthesis, structure, characterization, and redox properties of the porous MIL‐68 (Fe) solid. Inorg. Chem. 2010, 3789
(24) Embrechts, H.; Kriesten, M.; Ermer, M.; Peukert, W.; Hartmann, M.; Distaso, M. In Situ Raman and FTIR Spectroscopic Study on the Formation of the Isomers MIL-68(Al) and MIL-53(Al). RSC Adv. 2020, 10, 7336– 7348
(25) Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous Mesoporous Mater. 2012, 157, 131– 136
(26) Elsa Alvarez, Nathalie Guillou, Charlotte Martineau, Bart Bueken, Ben Van de Voorde,Clément Le Guillouzer, Paul Fabry, Farid Nouar, Francis Taulelle, Dirk de Vos, Jong-San Chang,Kyoung Ho Cho, Naseem Ramsahye, Thomas Devic, Marco Daturi, Guillaume Maurin, Christian Serre. Angew. Chem. Int. Ed. 2015, 54, 3664 –3668
(27) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 2012, 25, 17-26
(28) Jin, H.; Mo, K.; Wen, F.; Li, Y. J. Membr Preparation and pervaporation performance of CAU-10-H MOF membranes. J. Membr. Sci. 2019, 577, 129– 136
(29) Johnson, J. W.; Jacobson, A. J. Redox Intercalation Reactions of VOPO4·2H2O. Angew. Chem. Int. Edit. 1983, 22, 412.
(30) Khani, Y.; Kamyar, N.; Bahadoran, F.; Safari, N.; Amini, M. M. A520 MOF-Derived Alumina as Unique Support for Hydrogen Production from Methanol Steam Reforming: The Critical Role of Support on Performance. Renewable Energy, 2020, 156, 1055– 1064
(31) Rabenau, A. Angew. Chem. Int. Edit. 1985, 24, 1026-1040
(32) Prathap, M. U. A.; Gunasekaran, S. Rapid and Scalable Synthesis of Zeolitic Imidazole Framework (ZIF-8) and Its Use for the Detection of Trace Levels of Nitroaromatic Explosives. Adv. Sustainable Syst. 2018, 2, 1800053
(33) Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes Towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46, 3453– 3480.
(34) Batten, M. P.; Rubio-Martinez, M.; Hadley, T.; Carey, K.-C.; Lim, K.-S.; Polyzos, A.; Hill, M. R. Continuous Flow Production of Metal-Organic Frameworks Curr. Opin. Chem. Eng. 2015, 8, 55– 59
(35) Valizadeh, B.; Nguyen, T. N.; Smit, B.; Stylianou, K. C. Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gas-Sparged Column. Adv. Funct. Mater. 2018, 28, 1801596
(36) Kaiqiong, Qiu,;Lixian, Y,; Junmin, L,;Peitao, W,; Yi, Y,;Daiqi, Y,; Liming, W. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010. Atoms. Environ. 2014 ,86 ,102-112
(37) Yang, K.; Xue, F.; Sun, Q.; Yue, R.; Lin, D. J. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. Environ. Chem. Eng. 2013, 1, 713
(38) Vellingiri, K., Szulejko, J., Kumar, P. et al. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep. 2016, 6, 27813
(39) Shafiei, M.; Alivand, M. S.; Rashidi, A.; Samimi, A.; Mohebbi-Kalhori, D. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101(Cr) for VOCs removal at ambient conditions. Chem. Eng. J. 2018, 341, 164– 174
(40) Li, H. ; Eddaoudi M. ; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402, 276-279
(41) Kim, S. C.; Shim, W. G. Recycling the copper based spent catalyst for catalytic combustion of VOCs. Appl. Catal., B, 2008, 79, 149– 156
(42) Damasceno Borges, D.; Maurin, G.; Galvao, D. S. Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries. MRS Adv. 2017, 2, 519– 524
(43) Wang, H.; Wang, T.; Han, L.; Tang, M.; Zhong, J.; Huang, W.; Chen, R. VOC adsorption and desorption behavior of hydrophobic, functionalized SBA-15. J. Mater. Res. 2016, 31, 516– 525
(44) Khudozhitkov, A. E.; Arzumanov, S. S.; Kolokolov, D.; Stepanov, A. G. Dynamics of xylene isomers in MIL-53 (Al) MOF probed by solid state 2IH NMR. Microporous Mesoporous Mater. 2020, 30, 110155
(45) Zheng, C.; Wang, Y.; Phua, S. Z. F.; Lim, W. Q.; Zhao, Y. ZnO–DOX@ZIF-8 Core–Shell Nanoparticles for pH-Responsive Drug Delivery. ACS Biomater. Sci. Eng. 2017, 10, 2223–2229
(46) Liu,L.; Liu, J.; Zeng,Y.; Tan, S.J.; Do, D.; Nicholson, D. Formaldehyde adsorption in carbon nanopores–New insights from molecular simulation. Chem. Eng. J., 2019, 370, 866-874
(47) Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K. H.; Deep, A.; Boukhvalov, D. W.; Brown, R. J. C. Metal Organic Frameworks as Sorption Media for Volatile and Semi-Volatile Organic Compounds at Ambient Conditions. Sci. Rep. 2016, 6, 27813
(48) Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51−54.
(49) Ma, X.; Zhang, Z.; Wu, H.; Li, J.; Yang, L. Adsorption of volatile organic compounds at medium-high temperature conditions by activated carbons. Energy Fuels. 2020, 34, 3679-3690
(50) Carratalá-Abril, J. Lillo-Ródenas, M. A.; Linares-Solano, A.; Cazorla-Amorós, D. Activated carbons for the removal of low concentration gaseous toluene at the semipilot scale. Ind. Eng. Chem. Res. 2009, 48, 2066
(51) Qi, J.; Li,J.; Li, Y.; Fang, X.; Sun, X.; Shen, J.; Han, W.; Wang, L. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chemical Engineering Journal, 2016, 307, 989-998
(52) Liang, X.; Chi, J.; Yang, Z. The influence of functional group on activated carbon for acetone adsorption property by molecular simulation study. Microporous Mesoporous Mater. 2018, 262, 77
(53) Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal-Organic Framework Material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51−54