簡易檢索 / 詳目顯示

研究生: 藍元駿
LAN, YUAN-CHUN
論文名稱: 功能性奈米結構式電極晶片於生醫檢測之研究
Study of Functional Nanostructured Electrode Devices for Biomedical Detection
指導教授: 張天立
Chang, Tien-Li
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 生醫感測生醫晶片奈米線電阻式記憶體奈米結構
英文關鍵詞: biomedical detection, biosensor, nanowires, RRAM, nano-structures
論文種類: 學術論文
相關次數: 點閱:212下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米科技(Nanotechnology)不斷創新,以奈米製程技術製作各種感測器,在近年來已被大量研究,尤其在生醫檢測(Biomedical detection)上更備受重視。與醫院大型機台檢測比較,生醫感測晶片(Biomedical on-chip sensing devices)具有高功能性、輕薄、低價、即時和節能的眾多優點。由於攜帶方便且所需要的樣品少,民眾能在家自行檢測,提早獲得身體資訊,使病患在疾病初期,即可獲得有效的診療。目前,生醫檢測上的奈米結構,大多為一維的奈米線(Nanowire)結構,但該製程上擁有較高的不穩定性,且要使奈米線均勻分布在電極(Electrode)上的成功率不高,故在量產會為其困難。本研究是利用電子束微影技術(Electron-beam lithography)以及電漿蝕刻(Plasma etching),快速製備出陣列且具一致性的氮化鈦(Titanium nitride, TiN)奈米線結構感測器,其線寬約50 nm。另一方面,本研究會將奈米線結構延伸製作成水平式的氧化鎢電阻式記憶體(Resistive random-access memory, RRAM)結構感測器,並分別針對兩種結構進行電性檢測(Electrical detection)之探討。在氣體檢測的方面,氮化鈦奈米線感測器擁有較高的靈敏度及重複性,在氧氣濃度0.8 ppm時,有45%的電阻響應,適合作為氧氣濃度的感測器;而氧化鎢電阻式記憶體結構感測器在腔體抽離大氣中氣體時,電阻有較高的變化及響應,尤其在低阻態時,響應高達145%,說明氧化鎢(Tungsten dioxide)電阻式記憶體結構對於大氣中,其餘氣體擁有較高的感測能力。在生物分子的檢測上,本研究做了葡萄糖(Glucose)濃度的感測,一般人體中的正常血糖濃度範圍為700~1100 ng/μl,電阻式記憶體結構在葡萄糖濃度1052ng/μl時,高阻態擁有18535 %的電阻響應,遠大於奈米線結構的2146 %。在濃度高於1052ng/μl時,低阻態的電阻有較明顯的變化,當血糖高於正常值時,切換至低阻態,能有更佳的感測效果。推測電阻式記憶體結構在做血糖的量測,能有良好的效果。

    Since the innovation of the nanotechnology, many studies of design and fabricate the sensors are via nano-process technology in recent years. The biomedical detection is especially considered as an important event. Compared with the hospital-mainframe platform detection, the advantages of biomedical on-chip sensing devices are the high functionality, light weight, lower cost and real time. Because it is the portable devices with more less samples for detection, people can use them at home and then obtain the information about their bodies early. Hence, the patients can get effectively treatment early in the disease. The biomedical market of on-chip sensing devices is also significant and concerned. Generally, the on-chip sensors are mostly one-dimensional nanowire-based structures on biomedical detection currently. The nanowire process is instability where the nanowires uniform on electrodes is very difficult. So the nanowire-based sensing chip cannot be easily to mass production. In this study, titanium nitride (TiN) nanowire sensors arrays are fabricated by electron-beam lithography and plasma etching. Herein the width of nanowire is 50 nm. On the other hand, this study uses the nanowire structures to develop and fabricate the horizontal structure sensors in which the concept is resistive random-access memory (RRAM) with a tungsten oxide layer. The behavior of electrical detection can be measured and discussed for two types of structure sensors. For the gas detection, the oxygen can be detected by TiN nanowire sensors with high sensitivity and reproducibility. When the oxygen concentration is 0.8 ppm, the response of the resistance indicates 45%. In addition, RRAM-based sensors have higher change of resistance and higher response when leaving atmospheric condition in the chamber. The response is up to 145% at low resistance state especially. It shows that RRAM-based sensor with a tungsten oxide layer has a high sensing capability for the detection of remaining gases at the atmosphere. For the biomolecule detection, the glucose can be used in this study. At the glucose concentration of 1052 ng/μl, the high resistance state of RRAM-based sensor has the response of the resistance which is 18535%. This value is much higher than nanowire-based sensor where response of the resistance is with 2146%. When concentration of glucose is higher than 1052 ng/μl, the resistance at the low resistance state changes obviously. It can be seen that it will have better effect at the low resistance state when the blood glucose concentration is over the normal range. Consequently, RRAM-based sensors are able to possible to be developed for detection of blood glucose.

    摘要........................................i Abstract...................................ii 誌謝........................................iv 總目錄......................................v 圖目錄......................................vii 表目錄......................................xv 第一章 緒論................................1 1.1 生醫感測晶片簡介......................1 1.2 電極式感測器簡介......................2 1.3 奈米線結構簡介........................3 1.4 電阻式記憶體結構簡介...................4 1.5 研究動機與目的........................5 第二章 理論與文獻探討.......................11 2.1 奈米線感測機制及製作..................11 2.2 電阻式記憶體結構原理及製作.............15 第三章 研究設計與實驗規劃....................44 3.1 研究設計............................44 3.1.1 奈米線結構感測器.....................44 3.1.2 電阻式記憶體結構之感測器...............45 3.2 原子層沉積..........................45 3.3 電子束微影..........................46 3.4 聚焦離子束製程.......................49 3.5 電子束誘發沉積技術....................50 3.6 快速熱氧化製程.......................51 3.7 氣體分子檢測.........................52 3.8 生物分子撿測.........................52 3.9 實驗與量測設備.......................53 第四章 實驗結果與討論.......................65 4.1 奈米線結構背景值探討..................65 4.1.1 奈米線結構形貌.......................65 4.1.2 奈米線結構電性.......................65 4.2 電阻式記憶體結構背景值探討.............66 4.2.1 電阻式記憶體結構形貌..................66 4.2.2 電阻式記憶體結構電性..................67 4.3 奈米線結構於氣體感測..................68 4.4 電阻式記憶體結構於氣體感測.............69 4.5 奈米線結構於生醫檢測..................70 4.6 電阻式記憶體結構於生醫檢測.............71 第五章 結論與未來展望.......................95 5.1 結論...............................95 5.2 未來展望............................96 參考文獻....................................97

    [1] E. Primiceri, M. S. Chiriaco, R. Rinaldi and G. Maruccio, ” Cell chips as new tools for cell biology – results,perspectives and opportunities”, Lab on a Chip, Vol. 13, pp. 3789-3802 (2013).
    [2] A. Jemal, “Cancer statistics”, Cancer Journal for Clinicians, Vol. 61, pp. 133 (2011).
    [3] D.Gorski, “Cancer care in the u.s. versus europe: is more necessarily better? ”, Science-Based Medicine Reports (2012).
    [4] 國人10大死因統計,行政院衛生署報告 (2013).
    [5] R. Thusu, “Strong growth predicted for biosensors market”, Frost & Sullivan (2010).
    [6] F. Chiaradonna, R. M. Moresco, C. Airoldi, D. Gaglio, R Palorini, F. Nicotra, C. Messa and L. Alberghina, “From cancer metabolism to new biomarkers and drug targets”, Biotechnology Advances, Vol. 30, pp. 30-51 (2012).
    [7] M. Y. Shen, B. R. Li and Y. K. Li, “Silicon nanowire field-effect-transistor based biosensors:from sensitive to ultra-sensitive”, Biosensors and Bioelectronics, Vol. 60, pp. 101-111 (2014).
    [8] A. Choi, K. Kim, H. I. Jung and S. Y. Lee, “ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode”, Sensors and Actuators B: Chemical, Vol. 148, pp. 577–582 (2010).
    [9] S. F. Lee, Y. P. Chang, L. Y Lee, “Synthesis of carbon nanotubes on silicon nanowires by thermal chemical vapor deposition”, New Carbon Materials, Vol. 26, pp. 401-407 (2011).
    [10] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell”, Nano Letters, Vol. 11, pp. 666- 671 (2011).
    [11] Y. Gao, Y. S. Zhou, M. Qian , Z. Q. Xie, W. Xiong, H. F. Luo, L. Jiang and Y. F. Lu, “Fast growth of branched nickel monosilicide nanowires by laser-assisted chemical vapor deposition”, Nanotechnology, Vol. 22, issue 235602 (2011).
    [12] D. Ercolani, F. Rossi, A. Li , S. Roddaro, V. Grillo , G. Salviati, F. Beltram and L. Sorba, “InAs/InSb nanowire heterostructures grown by chemical beam epitaxy”, Nanotechnology, Vol. 20, issue 505605 (2009).
    [13] P. X. Gao and Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process”, Journal of Physical Chemistry B, Vol. 108, pp. 7534-7537 (2004).
    [14] 陳惠民、葛威成、黃宣諭,”奈米線感測與氣體之檢測”,奈米通訊(2011).
    [15] Y. Wu, B. Lee, and H. S. P. Wong, “Al2O3-based rram using atomic layer deposition (ALD) with 1-μA RESET current”, Electron Device letters, Vol. 31, pp. 1449-1451 (2010).
    [16] G. J. Zhang, Y. Ning, “Silicon Nanowire Biosensor and Its Applications in Disease Diagnostics: A review”, Analytica Chimica Acta, Vol. 749, pp. 1-15 (2012).
    [17] F. N. Ishikawa, H. K. Chang, M. Curreli, H. I. Liao, C. A. Olson, P. C. Chen, R. Zhang, R. W. Roberts, R. Sun,R. J. Cote, M. E. Thompson, and C. Zhou, “Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes”, ACS NANO, Vol. 3, pp. 1219-1224 (2009).
    [18] G. J. Zhang, J. H. Chua, R. E. Chee, A. Agarwal, S. M. Wong, “Label-free direct detection of MiRNAs with silicon nanowire biosensors”, Biosensors and Bioelectronics, Vol. 24, pp. 2504-2508 (2009).
    [19] G. J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E. J. A. Lim, T. G. Kang, Y. Chen, “Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus”, Sensors and Actuators B, Vol. 146, pp. 138-144 (2010).
    [20] N. Singh, C. Yan and P. S. Lee, “Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors”, Sensors and Actuators B, Vol. 150, pp. 19-24 (2010).
    [21] D. U. Kim and B. Yoo, “A novel electropolymerization method for Ppy nanowire-based NH3 gas sensor with low contact resistance”, Sensors and Actuators B, Vol. 160, pp. 1168-1173 (2011).
    [22] X. Luo, I. Lee, J. Huang, M. Yun and X. T. Cui, “Ultrasensitive protein detection using an aptamer-functionalized single polyaniline nanowire”, Chem. Commun., Vol. 47, pp. 6368-6370 (2011).
    [23] I. Lee, X. Luo, J. Huang, X. T. Cui and M. Yun, “Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors”, Biosensors, Vol. 2, pp. 205-220 (2012).
    [24] T. Kong, R. Su, B. Zhang, Q. Zhang and G. Cheng, “CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis”, Biosensors and Bioelectronics, Vol. 34, pp. 267–272 (2012).
    [25] J. Sim, K. Kim, S. Song and J. Kim, “Suspended GaN nanowires as NO2 sensor for high temperature applications”, Analyst, Vol. 138, pp. 2432–2437 (2013).
    [26] S. Park, S. Park, J. Jung, T. Hong, S. Lee, H. W. Kim and C. Lee, “H2S gas sensing properties of CuO-functionalized WO3 nanowires”, Ceramics International, Vol. 40, pp. 11051-11056 (2014).
    [27] 電阻式記憶體介紹,國家奈米元件實驗室對外資料(2013).
    [28] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsul, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novelcolossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)”, IEEE Electron Devices Meeting, pp. 193-196 (2002).
    [29] R. Colin Johnson, IMEC to detail memristor progress at VLSI Symposia, (2012).
    [30] C. H. Ho, C. L. Hsu, C. C. Chen, J. T. Liu, C. S. Wu, C. C. Hang, C. Hu, and F. L. Yang, “9nm half-pitch functional resistive memory cell with <1 A programming current using thermally oxidized sub-stoichiometric WOxfilm”, Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 19.1.1-19.1.4 (2010).
    [31] W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu and C. Y. Lu, “Unipolar switching behaviors of RTO WOX RRAM”, IEEE Electron Device Letters, Vol. 31, pp. 126-128 (2010).
    [32] J. Y. Son, Y. S. Shin and Y. H. Shin, “Nanoscale resistive random access memory consisting of a NiO nanodot and Au nanowires formed by dip-pen nanolithography”, Applied Surface Science, Vol. 257, pp. 9885-9887 (2011).
    [33] Y. Bai, Y. Zhang, H. Wu and H. Qian, “High-density WOx -based RRAM with a W-doped AlOx insertion layer”, Memory Workshop (IMW), 2013 5th IEEE International, pp. 120-123 (2013).
    [34] Y. Bai, H. Wu, Y. Zhang, M. Wu, J. Zhang, N. Deng, H. Qian, and Z. Yu, “Low power W:AlOx /WOx bilayer resistive switching structure based on conductive filament formation and rupture mechanism”, Applied Physics Letters, Vol. 102, issue. 173503 (2013).
    [35] H. Zhao, H. Tu, F. Wei, X. Zhang, Y. Xiong and J. Du, “The enhancement of unipolar resistive switching behavior via an amorphous TiOx layer formation in Dy2O3-based forming-free RRAM”, Solid-State Electronics, Vol. 89, pp. 12-16 (2013).
    [36] K. C. Chang, C. H. Pan, T. C. Chang, T. M. Tsai, R. Zhang, J. C. Lou, T. F. Young, J. H. Chen, C. C. Shih, T. J. Chu, J. Y. Chen, Y. T. Su, J. P. Jiang, K. H. Chen, H. C. Huang, Y. E. Syu, D. S. Gan, and S. M. Sze, “Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment”, IEEE Electron Device Letters, Vol. 34, pp. 617-619 (2013).
    [37] 奈米結構原子級薄膜製程技術,國家實驗研究院儀器科技研究中心2007年新聞資料(2007).
    [38] 楊金成、吳政三、柯富祥,TEL MK-8自動化阻劑旋轉塗佈及顯影系統介紹,毫微米通訊,第8卷第1期,pp.41-49.
    [39] A. A. Tseng, K. Chen, C. D. Chen and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 26, pp. 141-149(2003).
    [40] 陳俊淇,謝健,林俊宏, “電子束/聚焦離子束雙束系統應用介紹”, 國家奈米元件實驗室奈米通訊 (2008).
    [41] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, Journal of Micromechanics and Microengineering, Vol. 14, R15-R34(2004).
    [42] 陳文忠,尖峰式快速熱處理系統之熱預算與溫度均勻性控制策略,國立臺北科技大學化學工程研究所碩士學位論文(2011).
    [43] T. Lu, Zhang K. Zhang, F.Wang, K.Sun, W. Sun and J. Zhao,"Electrical properties and conduction mechanism of RRAM with Al/WOX/Cu structure", ECS Trans, Vol. 52, pp.1003-1008(2013).
    [44] J. Kukkola , J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó,A. Shchukarev , J. Mikkola , H. Jantunen and K. Kordás,"Gas sensors based on anodic tungsten oxide", Sensors and Actuators B: Chemical, Vol.153, pp.293-300 (2011).

    下載圖示
    QR CODE