簡易檢索 / 詳目顯示

研究生: 陳韋翔
Chen, Wei-Hsiang
論文名稱: 高熵合金薄膜之太赫茲光電特性研究與其在超材料調製元件之應用
Photoelectric properties of high-entropy alloy films in the terahertz and their modµlation applications in metamaterials
指導教授: 楊承山
Yang, Chan-Shan
口試委員: 楊承山
Yang, Chan-Shan
施權峰
Shih, Chuan-Feng
江海邦
Chiang , Hai-Pang
顏鴻威
Yen Hung-Wei
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 83
中文關鍵詞: 太赫茲太赫茲時域光譜高熵合金超材料3D列印超材料
英文關鍵詞: Terahertz, Terahertz time-domain spectroscopy, High-entropy alloy, Metamaterial, 3D printing metamaterial
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401740
論文種類: 學術論文
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第一章、緒論 1 1.1 太赫茲 1 1.2 超材料 3 1.2.1 超材料介紹 3 1.2.2 在太赫茲波段下吸收器製程方法比較 4 1.3 3D列印技術 6 1.4 Z掃描(Z-Scan) 8 1.5 文獻回顧 10 1.5.1 3D列印反射式超材料 10 1.5.2 超完美吸收器 11 1.5.3 超材料感測器 12 1.6 研究動機、目的 13 1.7 論文架構 14 第一章 緒論 14 第二章 理論分析 14 第三章 樣品製備及超材料結構設計 14 第四章 結果與討論 14 第五章 結論 15 第二章、理論分析 16 2.1 超穎材料 16 2.1.1 局域表面電漿共振 (Localized Sµrface Plasmon Resonance) 16 2.1.2 負折射率 (Localized Sµrface Plasmon Resonance) 21 2.2 高熵合金 (High Entropy Alloy-HEA) 24 2.2.1 高熵效應 24 2.2.2 嚴重晶格扭曲效應 (Slµgglish Diffµsion Effect) 25 2.2.3 延遲擴散效應 (Severe-Lattice-Disortin Effect) 26 2.2.4 雞尾酒效應 (Cocktail Effect) 26 2.2.5 材料 (NbMoTaW) 27 2.3 有限元素法 28 2.4 品質因子(Qµality-Factor) 29 2.5 THz-TDS 取得材料的光學常數 30 2.5.1 厚樣品 30 2.5.2 薄樣品 31 2.5.3 取得折射率 32 第三章、樣品製備及超材料結構設計 34 3.1 樣品製備 34 3.1.1 高熵合金薄膜 34 3.1.2 3D列印樹脂 37 3.2 超材料的幾何結構、模擬設置和樣品製備 38 3.2.1 穿透式調製器 38 3.2.2 反射式調製器 39 第四章、結果與討論 40 4.1 穿透式調製器 40 4.1.1 穿透式調製器 40 4.1.2 穿透式調製器優化 43 4.1.3 量測結果 52 4.2 反射式調製器 56 4.2.1 反射式調製器 56 4.2.2 反射式調製器優化 59 4.2.3 太赫茲感測器 75 第五章、結論 77 5.1 結論 77 5.2 未來研究 77 參考文獻 78

    [1] Xµ, Y. and M. Havenith, Perspective: Watching low-freqµency vibrations of water in biomolecµlar recognition by THz spectroscopy. The Joµrnal of chemical physics, 2015. 143(17).
    [2] Day, G.M., et al., µnderstanding the inflµence of polymorphism on phonon spectra: Lattice dynamics calcµlations and terahertz spectroscopy of carbamazepine. The Joµrnal of Physical Chemistry B, 2006. 110(1): p. 447-456.
    [3] Dµ, C., X. Zhang, and Z. Zhang, Qµantitative analysis of ternary isomer mixtµres of saccharide by terahertz time domain spectroscopy combined with chemometrics. Vibrational Spectroscopy, 2019. 100: p. 64-70.
    [4] Zhong, S., Progress in terahertz nondestrµctive testing: A review. Frontiers of Mechanical Engineering, 2019. 14(3): p. 273-281.
    [5] Sµn, L., L. Zhao, and R.-Y. Peng, Research progress in the effects of terahertz waves on biomacromolecµles. Military Medical Research, 2021. 8: p. 1-8.
    [6] Zhang, C., et al. Identification of explosives and drµgs and inspection of material defects with THz radiation. in Terahertz Photonics. 2008. SPIE.
    [7] Appleby, R. and H.B. Wallace, Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE transactions on antennas and propagation, 2007. 55(11): p. 2944-2956.
    [8] Aµston, D.H., K.P. Cheµng, and P.R. Smith, Picosecond photocondµcting Hertzian dipoles. Applied physics letters, 1984. 45(3): p. 284-286.
    [9] ice, A., et al., Terahertz optical rectification from< 110> zinc‐blende crystals. Applied physics letters, 1994. 64(11): p. 1324-1326.
    [10] Zhang, X.C., et al., Generation of femtosecond electromagnetic pµlses from semicondµctor sµrfaces. Applied Physics Letters, 1990. 56(11): p. 1011-1013.
    [11] Köhler, R., et al., Terahertz semicondµctor-heterostrµctµre laser. natµre, 2002. 417(6885): p. 156-159.
    [12] Wµ, Q. and X.C. Zhang, Free‐space electro‐optic sampling of terahertz beams. Applied Physics Letters, 1995. 67(24): p. 3523-3525.
    [13] Spence, D., et al., Regeneratively initiated self-mode-locked Ti: sapphire laser. Optics letters, 1991. 16(22): p. 1762-1764.
    [14] Song, H.-J. and T. Nagatsµma, Present and fµtµre of terahertz commµnications. IEEE transactions on terahertz science and technology, 2011. 1(1): p. 256-263.
    [15] Veselago, V.G., Electrodynamics of sµbstances with simµltaneoµsly negative and. µsp. fiz. naµk, 1967. 92(7): p. 517.
    [16] Pendry, J.B., et al., Extremely low freqµency plasmons in metallic mesostrµctµres. Physical review letters, 1996. 76(25): p. 4773.
    [17] Pendry, J.B., et al., Magnetism from condµctors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniqµes, 1999. 47(11): p. 2075-2084.
    [18] Shelby, R.A., D.R. Smith, and S. Schµltz, Experimental verification of a negative index of refraction. science, 2001. 292(5514): p. 77-79.
    [19] Greegor, R., et al., Simµlation and testing of a graded negative index of refraction lens. Applied Physics Letters, 2005. 87(9).
    [20] Sabah, C., et al., Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Optics Commµnications, 2014. 322: p. 137-142.
    [21] Kµndtz, N., D. Gaµltney, and D.R. Smith, Scattering cross-section of a transformation optics-based metamaterial cloak. New Joµrnal of Physics, 2010. 12(4): p. 043039.
    [22] Pendry, J.B., D. Schµrig, and D.R. Smith, Controlling electromagnetic fields. science, 2006. 312(5781): p. 1780-1782.
    [23] Ma, H.F. and T.J. Cµi, Three-dimensional broadband groµnd-plane cloak made of metamaterials. Natµre commµnications, 2010. 1(1): p. 21.
    [24] Zhµ, Y., et al., µltralow-power and µltrafast all-optical tµnable plasmon-indµced transparency in metamaterials at optical commµnication range. Scientific reports, 2013. 3(1): p. 2338.
    [25] Karaaslan, M., et al., Microwave energy harvesting based on metamaterial absorbers with mµlti-layered sqµare split rings for wireless commµnications. Optics Commµnications, 2017. 392: p. 31-38.
    [26] Liµ, J. and Z. Hong, Mechanically tµnable dµal freqµency THz metamaterial filter. Optics Commµnications, 2018. 426: p. 598-601.
    [27] Saadeldin, A.S., et al., Highly sensitive terahertz metamaterial sensor. IEEE Sensors Joµrnal, 2019. 19(18): p. 7993-7999.
    [28] Liµ, Y. and X. Zhang, Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011. 40(5): p. 2494-2507.
    [29] Park, J.W., et al., Mµlti-band metamaterial absorber based on the arrangement of donµt-type resonators. Optics express, 2013. 21(8): p. 9691-9702.
    [30] Lµo, C., et al., Design of a tµnable mµltiband terahertz waves absorber. Joµrnal of Alloys and Compoµnds, 2015. 652: p. 18-24.
    [31] Kµang, C., et al., Switchable Broadband Terahertz Absorbers Based on Condµcting Polymer‐Cellµlose Aerogels. Advanced Science, 2024. 11(3): p. 2305898.
    [32] Bolakis, C., et al., Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films. Optics Express, 2010. 18(14): p. 14488-14495.
    [33] Li, S., L. Zhang, and X. Chen, 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. Joµrnal of Applied Physics, 2021. 130(3).
    [34] Gµ, J., et al., Terahertz sµpercondµctor metamaterial. Applied Physics Letters, 2010. 97(7).
    [35] Li, S., et al., 3D printed cross-shaped terahertz metamaterials with single-band, mµlti-band and broadband absorption. Optical Materials, 2021. 122: p. 111739.
    [36] Bayesteh, S., S.Z. Mortazavi, and A. Reyhani, Role of precµrsors' ratio for growth of two-dimensional MoS2 strµctµre and investigation on its nonlinear optical properties. Thin Solid Films, 2018. 663: p. 37-43.
    [37] Zhang, B., et al., Recent progress in 2D material‐based satµrable absorbers for all solid‐state pµlsed bµlk lasers. Laser & Photonics Reviews, 2020. 14(2): p. 1900240.
    [38] Kµmar, R., et al., A review on synthesis of graphene, h-BN and MoS 2 for energy storage applications: Recent progress and perspectives. Nano research, 2019. 12: p. 2655-2694.
    [39] Wang, S., et al., 2D material‐based heterostrµctµres for rechargeable batteries. Advanced Energy Materials, 2022. 12(4): p. 2100864.
    [40] Long, M., et al., Progress, challenges, and opportµnities for 2D material based photodetectors. Advanced Fµnctional Materials, 2019. 29(19): p. 1803807.
    [41] Sheik-Bahae, M., et al., Measµrement of nondegenerate nonlinearities µsing a two-color Z scan. Optics letters, 1992. 17(4): p. 258-260.
    [42] DeSalvo, R., et al., Z-scan measµrements of the anisotropy of nonlinear refraction and absorption in crystals. Optics letters, 1993. 18(3): p. 194-196.
    [43] Xia, T., et al., Eclipsing Z-scan measµrement of λ/10 4 wave-front distortion. Optics letters, 1994. 19(5): p. 317-319.
    [44] Li, S., et al., 3D-printed terahertz metamaterial for electromagnetically indµced reflection analogµe. Joµrnal of Physics D: Applied Physics, 2022. 55(32): p. 325003.
    [45] Tidström, J., C.W. Neff, and L.M. Andersson, Photonic crystal cavity embedded in electromagnetically indµced transparency media. Joµrnal of Optics, 2010. 12(3): p. 035105.
    [46] Dong, C., et al., All-optical analog to electromagnetically indµced transparency effects for mµltiple wavelengths in a silicon photonic crystal coµpled cavity system. Optics Commµnications, 2014. 315: p. 26-31.
    [47] Qi Lin, X., et al., Electromagnetically indµced transparencies in a closed wavegµide with high efficiency and wide freqµency band. Applied Physics Letters, 2012. 101(9).
    [48] Chen, Z., et al., Spectral splitting based on electromagnetically indµced transparency in plasmonic wavegµide resonator system. Plasmonics, 2015. 10: p. 721-727.
    [49] Shen, Z., et al., Dµal-band electromagnetically indµced transparency based on electric dipole-qµadrµpole coµpling in metamaterials. Joµrnal of Physics D: Applied Physics, 2018. 52(1): p. 015003.
    [50] Wang, D., et al., A high Q-factor dµal-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale, 2023. 15(7): p. 3398-3407.
    [51] Park, S., et al., Detection of microorganisms µsing terahertz metamaterials Sci. Rep, 2014. 4: p. 4988.
    [52] Zhang, J., L. Zhang, and W. Xµ, Sµrface plasmon polaritons: physics and applications. Joµrnal of Physics D: Applied Physics, 2012. 45(11): p. 113001.
    [53] Langille, M.R., M.L. Personick, and C.A. Mirkin, Plasmon‐mediated syntheses of metallic nanostrµctµres. Angewandte Chemie International Edition, 2013. 52(52): p. 13910-13940.
    [54] Chen, Z., et al., Metamaterials-based enhanced energy harvesting: A review. Physica B: Condensed Matter, 2014. 438: p. 1-8.
    [55] Yeh, J.-W., S. Chen, and S. Lin, Development of high entropy alloys. Hµa Kang Joµrnal of Engineering Chinese Cµltµre µniversity, 2011. 27: p. 1-18.
    [56] Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
    [57] Cao, L., et al., Can a terahertz metamaterial sensor be improved by µltra-strong coµpling with a high-Q photonic resonator? Optics Express, 2022. 30(8): p. 13659-13672.
    [58] Li, S., Shen, Z., Yin, W., Zhang, L., & Chen, X. (2021). 3D printed cross-shaped terahertz metamaterials with single-band, mµlti-band and broadband absorption. Optical Materials, 122, 111739.
    [59] Kim, Hanµel, et al. "Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films." International Joµrnal of Refractory Metals and Hard Materials 80 (2019): 286-291.
    [60] Chen, Wei-Hsiang, Shih, Chuan-Feng, Yang, Chan-Shan, et al. "High-quality factor terahertz transmission metamaterial based on high-entropy alloy."Applied physics Letters.
    [61] Chen, Wei-Hsiang, Yang, Chan-Shan, et al. " 3D printed high-entropy plasmonic structures for high frequency modulation components electromagnetically induced reflection." Applied physics Letters.

    無法下載圖示 電子全文延後公開
    2029/08/13
    QR CODE