簡易檢索 / 詳目顯示

研究生: 丘幃尹
Qiu, Wei-Yin
論文名稱: 抑制血栓素及血栓素受體訊號減輕血管內皮素-1及缺血再灌流所引起的心臟損傷
Inhibition of Thromboxane A2/Thromboxane Receptor Signaling Attenuates Endothelin-1-evoked and Ischemia/Reperfusion-induced Injury in Mouse heart
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 缺血再灌流傷害血栓素及血栓素受體訊息血管內皮素-1急性心肌梗塞
英文關鍵詞: Ischemia and Reperfusion Injury, TXAS-TXA2-TP Signaling, Acute Myocardial Infarction, Endothelin-1
DOI URL: https://doi.org/10.6345/NTNU202202506
論文種類: 學術論文
相關次數: 點閱:112下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病包括冠心病、心絞痛、急性心肌梗塞等等,為世界死因之首。根據台灣衛生福利部的統計,我國心血管疾病為第二大死因,每十萬人就有88.1人於心血管疾病,僅次於惡性腫瘤的199.6人。心肌缺血會使心肌細胞發生強烈的發炎反應且再灌流後會使冠狀動脈釋放出大量活性氧物質,而活性氧物質又促進血栓的形成,影響到血栓素合成酶(Thromboxane A2 synthase, TXAS)-血栓素 (Thromboxane A2, TXA2)-血栓素受體 (Thromboxane prostanoid receptor, TP receptor)訊息傳遞路徑,包括增加了血栓素合成酶(Thromboxane A2 synthase, TXAS)的表達和血栓素受體(Thromboxane prostanoid receptor, TP receptor)的活性,最終增加了血管內皮素(Endothelin-1, ET-1)釋放造成更加嚴重的傷害。
    本篇研究即是要探討抑制掉TXAS-TXA2-TP訊息傳遞路徑後,ET-1所喚起的傷害和在心肌缺血再灌流的傷害上扮演著什麼樣的角色。我們使用三種不同基因型的老鼠,TXAS+/+TP+/+、TXAS-/-TP+/+及TXAS-/-TP-/-小鼠並將實驗分為以下幾組。
    1. 所有的小鼠將被隨機靜脈注射生理實驗水、U46619 (TXA2 agonist, 2 mg/kg)和ET-1(0.001-0.2 µg/kg)測量其心臟微循環,共四組(各組N=6)。
    2. 所有的小鼠將被隨機執行血管環模型實驗(wire myography),測量其血管對藥物(norepinephrine, acetylcholine, U46619, ET-1 )的收縮或舒張反應,共四組(各組N=6)。
    3. 所有的小鼠將被隨機執行心肌缺血再灌流模型(myocardial ischemia/reperfusion model)手術,共四組(各組N=6)。
    並搭配組織免疫染色、血漿心肌旋轉蛋白(Troponin I)含量測定來看探討其細胞凋亡、細胞自噬、發炎性細胞凋亡和發炎之分生機轉及心肌梗塞之嚴重程度。
    我們的研究結果指出抑制TXAS-TXA2-TP訊息傳遞路徑,可以有效的減少心肌缺血再灌流所引起的細胞凋亡、發炎性細胞凋亡和氧化壓力,對小鼠具有較佳之心臟保護效果。

    Cardiovascular disease has become one of the most harmful human diseases with highest morbidity in the world, especially coronary heart disease and myocardial infarction. According to Ministry of Health and Welfare, the cardiovascular disease is the second cause of death and accounts for 0.881‰ death per year in Taiwan, second only to cancer.
    Myocardial ischemia/reperfusion (I/R) induces the release of oxidants in coronary arteries. Following the production, the oxidants may activate platelets and consequently induce thrombus formation. It is well known that thromboxane A2 synthase (TXAS) —thromboxane A2 (TXA2)—thromboxane prostanoid receptor (TP)— would activate TP, and increasing release of endothelin-1 (ET-1) to bring about more serious injury.
    In order to explore the role of TXAS-TXA2-TP pathway in endothelin-1 (ET-1) activation during I/R injury, we utilized mouse with gene depletion in TXAS (TXAS–/–) and both TXAS and TP (TXAS–/–TP–/–) mice. All mice were randomly subjected to intravenous normal saline, endothelin-1 (0.001-0.2 µg/kg body weight), U46619 (TXA2 agonist, 2 mg/kg body weight). Using Wire myograph model to determine the vascular reactivity of rat mesentery arteries, we investigated the possible signaling pathway between ET-1 and TXAS-TXA2-TP. In myocardial I/R model, the cardiac injuries were evaluated by microcirculation, electrocardiogram and plasma troponin I. We explored the mechanisms including apoptosis, pyroptosis and inflammation via level of plasma troponin I and immunohistochemistry stain in these animals.
    Our results indicate that the inhibition of TXAS-TXA2-TP pathway provides cardiac protection against myocardial I/R injury.

    I. 中文摘要 4 II. ABSTRACT 6 III. ABBREVIATIONS 8 IV. INTRODUCTION 10 1. THE CARDIOVASCULAR DISEASES IN WORLDWIDE 10 2. MYOCARDIAL ISCHEMIA REPERFUSION INJURY 10 3. THE ASSOCIATION BETWEEN ENDOTHELIN-1 AND TXAS-TXA2-TP SIGNALING PATHWAY IN MYOCARDIAL ISCHEMIA REPERFUSION INJURY 11 4. USING TXAS OR TP GENE KNOCKOUT MICE FOR EXPLORING TXAS-TXA2-TP SIGNALING PATHWAY 14 5. AIM 14 V. MATERIALS AND METHODS 15 1. ANIMALS 15 1.1 WILD TYPE, TXAS AND TP GENE KNOCKOUT MICE 15 1.2 TXAS AND TP DOUBLE KNOCKOUT MICE: 16 1.3 SURGICAL PREPARATION 16 2. MEASUREMENT OF ELECTROCARDIOGRAPHIC PARAMETERS 17 3. CARDIAC MICROCIRCULATION DETERMINATION 17 4. WIRE MYOGRAPHY 18 5. INDUCTION OF ACUTE MYOCARDIAL INFRACTION 19 6. IMMUNOHISTOCHEMISTRY (IHC) 20 7. TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 21 8. MEASUREMENT OF CARDIAC TROPONIN I 23 9. STATISTICAL ANALYSES 23 VI. RESULTS 24 1. HEART MICROCIRCULATION UNDER INTRAVENOUS NORMAL SALINE, U46619 AND ENDOTHELIN-1. 24 2. ECG UNDER INTRAVENOUS NORMAL SALINE, U46619 AND ENDOTHELIN-1. 25 3. EFFECT OF CONTRACTION AND RELAXATION IN MESENTERIC ARTERIES 26 4. MICROCIRCULATION AND ECG UNDER MYOCARDIAL ISCHEMIA REPERFUSION INJURY IN THREE GENOTYPE MICE 27 5. HEMATOXYLIN AND EOSIN (H&E) STAIN 28 6. TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 28 7. IMMUNOHISTOCHEMISTRY ANALYSIS 29 8. PLASMA LEVEL OF TROPONIN I MEASUREMENT. 30 VII. DISCUSSION 31 1. PREVIOUS STUDIES OF TXAS-TXA2-TP SIGNALING AND ET-1 IN CARDIOVASCULAR DISEASES. 31 2. IMPACT OF ECG AND HEART MICROCIRCULATION THROUGH TXAS-TXA2-TP SIGNALING AND ET-1. 32 3. PHARMACOLOGICAL RESPOND IN RESISTANCE ARTERY THROUGH TXAS-TXA2-TP SIGNALING AND ET-1. 33 4. INHIBITION OF TXAS-TXA2-TP SIGNALING ATTENUATE INJURY EVOKED BY MYOCARDIAL ISCHEMIA REPERFUSION THROUGH APOPTOSIS, OXIDATIVE STRESS, INFLAMMATION AND PYROPTOSIS. 34 VIII. CONCLUSION 39 IX. REFERENCE 40 X. FIGURES AND TABLES 48 FIGURE. 1 ISCHEMIA/REPERFUSION MODEL IN MICE. 48 FIGURE. 2 CARDIAC MICROCIRCULATION UNDER INTRAVENOUS NORMAL SALINE IN A MINUTE. 49 FIGURE. 3 CARDIAC MICROCIRCULATION UNDER INTRAVENOUS U46619 (TP AGONIST, 2MG/KG) IN A MINUTE. 50 FIGURE. 4 CARDIAC MICROCIRCULATION UNDER INTRAVENOUS ET-1 (2.5 µG/KG) IN A MINUTE. 51 FIGURE. 5 CARDIAC MICROCIRCULATION UNDER INTRAVENOUS ET-1 (25 µG/KG) IN A MINUTE. 52 FIGURE. 6 CARDIAC MICROCIRCULATION UNDER INTRAVENOUS ET-1 (250 µG/KG) IN A MINUTE. 53 FIGURE. 7 (A) PERFUSION UNIT OF CARDIAC MICROCIRCULATION UNDER INTRAVENOUS NORMAL SALINE (RED ARROW) AMONG THREE GENOTYPE MICE. (B) THE PERCENTAGE OF PERFUSION UNIT AMONG MICE GENOTYPES. 54 FIGURE. 8 (A) PERFUSION UNIT OF CARDIAC MICROCIRCULATION UNDER INTRAVENOUS U46619 (TP AGONIST, 2MG/KG, RED ARROW) AMONG THREE GENOTYPE MICE. (B) THE PERCENTAGE OF PERFUSION UNIT AMONG MICE GENOTYPES. 55 FIGURE. 9 (A) PERFUSION UNIT OF CARDIAC MICROCIRCULATION UNDER INTRAVENOUS ET-1 (2.5µG/KG, 25 µG/KG AND 250µG/KG, RED, BLUE AND GREEN ARROW) AMONG THREE GENOTYPE MICE. 56 FIGURE. 10 ECG OF THREE GENOTYPE MICE UNDER INTRAVENOUS NORMAL SALINE IN THREE MINUTES. 57 FIGURE. 11 ECG OF THREE GENOTYPE MICE UNDER INTRAVENOUS U46619 (TP AGONIST, 2MG/KG) IN THREE MINUTES. 58 FIGURE. 12 FIGURE. 10 EKG OF THREE GENOTYPE MICE UNDER INTRAVENOUS ET-1(2.5, 25 AND 250 µG/KG). 59 FIGURE. 13 THE R-R INTERVAL UNDER INTRAVENOUS (A) NORMAL SALINE, (B) U46619 (2MG/KG) AND (C) ET-1 (2.5, 25 AND 250 µG/KG) AMONG THREE GENOTYPE MICE. 60 FIGURE. 14 EFFECT OF CONTRACTION AND RELAXATION IN MESENTERIC ARTERIES. (A) NOREPINEPHRINE (B) ACETYLCHOLINE (C) U46619 (D) ENDOTHELIN-1. 62 FIGURE. 15 CARDIAC MICROCIRCULATION (A) AND ECG (B) WITH MYOCARDIAL ISCHEMIA/REPERFUSION INJURY IN B6 MICE. 63 FIGURE. 16 CARDIAC MICROCIRCULATION (A) AND ECG (B) WITH MYOCARDIAL ISCHEMIA/REPERFUSION INJURY IN TXAS-/-TP+/+ MICE. 64 FIGURE. 17 CARDIAC MICROCIRCULATION (A) AND ECG (B) WITH MYOCARDIAL ISCHEMIA/REPERFUSION INJURY IN TXAS-/-TP-/- MICE. 65 FIGURE. 18 HISTOLOGICAL FEATURE OF HEART. 66 FIGURE. 19 TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 67 FIGURE. 20 IMMUNOHISTOCHEMISTRY OF BECLIN-1 68 FIGURE. 21 IMMUNOHISTOCHEMISTRY OF IL-1Β 69 FIGURE. 22 IMMUNOHISTOCHEMISTRY OF 4-HNE 70 FIGURE. 23 PLASMA TROPONIN-I CONCENTRATION AFTER I/R. 71

    Bell, R. M., Bøtker, H. E., Carr, R. D., Davidson, S. M., Downey, J. M., Dutka, D. P., Ovize, M. (2016). 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic research in cardiology, 111(4), 41.

    Braunwald, E., Kloner, R. A. (1985). Myocardial reperfusion: a double-edged sword?. Journal of Clinical Investigation, 76(5), 1713.

    Broegger, T., Jacobsen, J. C. B., Secher Dam, V., Boedtkjer, D. M. B., Kold-Petersen, H., Pedersen, F. S., Matchkov, V. V. (2011). Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. Cardiovascular research, 91(4), 685-693.

    Buttke, T. M., Sandstrom, P. A. (1994). Oxidative stress as a mediator of apoptosis. Immunology today, 15(1), 7-10.

    Chien, C. T., Shyue, S. K., Lai, M. K. (2007). Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation, 84(9), 1183-1190.

    Chien, C. Y., Chien, C. T., Wang, S. S. (2014). Progressive thermopreconditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and antiapoptotic mechanisms. The Journal of thoracic and cardiovascular surgery, 148(2), 705-713.

    Chung, S. D., Lai, T. Y., Chien, C. T., Yu, H. J. (2012). Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PloS one, 7(10), e47299.

    DeFilippis, A. P., Oloyede, O. S., Andrikopoulou, E., Saenger, A. K., Palachuvattil, J. M., Fasoro, Y. A., Gerstenblith, G. (2013). Thromboxane A2 generation, in the absence of platelet COX-1 activity, in patients with and without atherothrombotic myocardial infarction. Circulation Journal, 77(11), 2786-2792.

    Ezzati, M., Vander Hoorn, S., Rodgers, A., Lopez, A. D., Mathers, C. D., Murray, C. J. (2003). Estimates of global and regional potentil health gains from reducing muliple major risk factors. The Lancet, 362(9380), 271-280.

    Filep, J. G., Fournier, A., Földes‐Filep, É. (1994). Endothelin‐1‐induced myocardial ischaemia and oedema in the rat: involvement of the ETA receptor, platelet‐activating factor and thromboxane A2. British journal of pharmacology, 112(3), 963-971.

    Fitzgerald, D. J., Roy, L., Catella, F., FitzGerald, G. A. (1986). Platelet activation in unstable coronary disease. New England Journal of Medicine, 315(16), 983-989.

    Frank, A., Bonney, M., Bonney, S., Weitzel, L., Koeppen, M., Eckle, T. (2012, September). Myocardial ischemia reperfusion injury: from basic science to clinical bedside. In Seminars in cardiothoracic and vascular anesthesia (Vol. 16, No. 3, pp. 123-132). Sage CA: Los Angeles, CA: SAGE Publications.

    Giaid, A., Yanagisawa, M., Langleben, D., Michel, R. P., Levy, R., Shennib, H., Stewart, D. J. (1993). Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. New England Journal of Medicine, 328(24), 1732-1739.

    Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., Engler, R. L. (1994). Reperfusion injury induces apoptosis in rabbit cardiomyocytes. Journal of Clinical Investigation, 94(4), 1621.

    Hallén, J., Buser, P., Schwitter, J., Petzelbauer, P., Geudelin, B., Fagerland, M. W., Atar, D. (2009). Relation of cardiac troponin I measurements at 24 and 48 hours to magnetic resonance–determined infarct size in patients with ST-elevation myocardial infarction. The American journal of cardiology, 104(11), 1472-1477.

    Hashmi, S., Al-Salam, S. (2015). Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison. International journal of clinical and experimental pathology, 8(8), 8786.

    Huang, R. Y., Li, M. Y., Ng, C. S., Wan, I. Y., Kong, A. W., Du, J., Chen, G. G. (2013). Thromboxane A2 receptor α promotes tumor growth through an autoregulatory feedback pathway. Journal of molecular cell biology, 5(6), 380-390.

    Kloner, R. A. (1993). Does reperfusion injury exist in humans?. Journal of the American College of Cardiology, 21(2), 537-545.

    Kuzuya, T., Hoshida, S., Nishida, M., Kim, Y., Kamada, T., Tada, M. (1987). Increased production or arachidonate metabolites in an occlusion-reperfusion model of canine myocardial infarction. Cardiovascular research, 21(8), 551-558.

    Lieberthal, W., Menza, S. A., Levine, J. S. (1998). Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. American Journal of Physiology-Renal Physiology, 274(2), F315-F327.

    Mair, J., Wagner, I., Morass, B., Fridrich, L., Lechleitner, P., Dienstl, F., Puschendorf, B. (1995). Cardiac troponin I release correlates with myocardial infarction size. European journal of clinical chemistry and clinical biochemistry, 33(11), 869-872.

    Mcmurray, J. J., Ray, S. G., Abdullah, I., Dargie, H. J., Morton, J. J. (1992). Plasma endothelin in chronic heart failure. Circulation, 85(4), 1374-1379.

    Mullane, K. M., Fornabaio, D. (1988). Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin-sensitive mechanism. Circulation research, 62(4), 668-678.

    Nakahata, N. (2008). Thromboxane A 2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacology & therapeutics, 118(1), 18-35.

    Nichols, W. W., Mehta, J., Wargovich, T. J., Franzini, D., Lawson, D. (1989). Reduced myocardial neutrophil accumulation and infarct size following thromboxane synthetase inhibitor or receptor antagonist. Angiology, 40(3), 209-221.

    Nowak, K. L., Chonchol, M., Ikizler, T. A., Farmer-Bailey, H., Salas, N., Chaudhry, R., Hung, A. M. (2017). IL-1 Inhibition and Vascular Function in CKD. Journal of the American Society of Nephrology, 28(3), 971-980.

    Oyama, J. I., Blais, C., Liu, X., Pu, M., Kobzik, L., Kelly, R. A., Bourcier, T. (2004). Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation, 109(6), 784-789.

    Price, A. N., Cheung, K. K., Lim, S. Y., Yellon, D. M., Hausenloy, D. J., Lythgoe, M. F. (2011). Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. Journal of Cardiovascular Magnetic Resonance, 13(1), 44.

    Qiu, H., Liu, J. Y., Wei, D., Li, N., Yamoah, E. N., Hammock, B. D., Chiamvimonvat, N. (2012). Cardiac-generated prostanoids mediate cardiac myocyte apoptosis after myocardial ischaemia. Cardiovascular research, 95(3), 336-345.

    Raedschelders, K., Ansley, D. M., Chen, D. D. (2012). The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacology & therapeutics, 133(2), 230-255.

    Santoro, A., Mandreoli, M. (2014). Chronic renal disease and risk of cardiovascular morbidity-mortality. Kidney and Blood Pressure Research, 39(2-3), 142-146.

    Setianto, B. Y., Hartopo, A. B., Sukmasari, I., Puspitawati, I. (2016). On-admission high endothelin-1 level independently predicts in-hospital adverse cardiac events following ST-elevation acute myocardial infarction. International journal of cardiology, 220, 72-76.

    Shen, R. F., Tai, H. H. (1998). Thromboxanes: synthase and receptors. Journal of biomedical science, 5(3), 153-172.

    Shiraishi, J., Tatsumi, T., Keira, N., Akashi, K., Mano, A., Yamanaka, S., Fliss, H. (2001). Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 281(4), H1637-H1647.

    Sui, D. Y., Qu, S. C., Yu, X. F., Chen, Y. P., Ma, X. Y. (2004). Protective effect of ASS on myocardial ischemia-reperfusion injury in rats. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 29(1), 71-74.

    Suma, H. (2013). Gastroepiploic artery graft in coronary artery bypass grafting. Annals of cardiothoracic surgery, 2(4), 493.

    Thomas, D. W., Mannon, R. B., Mannon, P. J., Latour, A., Oliver, J. A., Hoffman, M., Coffman, T. M. (1998). Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. Journal of Clinical Investigation, 102(11), 1994.

    Vinten-Johansen, J. (2004). Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovascular research, 61(3), 481-497.

    Wang, C., Luo, Z., Kohan, D., Wellstein, A., Jose, P. A., Welch, W. J., Wang, D. (2015). Thromboxane Prostanoid Receptors Enhance Contractions, Endothelin-1 and Oxidative Stress in Microvessels From Mice With Chronic Kidney Disease. Hypertension, HYPERTENSIONAHA-115.

    Wu, C. Y., Yeh, Y. C., Chien, C. T., Chao, A., Sun, W. Z., Cheng, Y. J. (2015). Laser speckle contrast imaging for assessing microcirculatory changes in multiple splanchnic organs and the gracilis muscle during hemorrhagic shock and fluid resuscitation. Microvascular research, 101, 55-61.

    Yamamoto, T., Hosoki, K., Karasawa, T. (1993). Possible involvement of endothelin in thromboxane A2 receptor agonist (U-46619)-induced angina in the rat. European journal of pharmacology, 250(1), 189-191.

    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. nature, 332(6163), 411-415.

    Yang, J. R., Yao, F. H., Zhang, J. G., Ji, Z. Y., Li, K. L., Zhan, J., He, Y. N. (2014). Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. American Journal of Physiology-Renal Physiology, 306(1), F75-F84.

    Yellon, D. M., Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357(11), 1121-1135.

    Yu, I. S., Lin, S. R., Huang, C. C., Tseng, H. Y., Huang, P. H., Shi, G. Y., Wu, K. K. (2004). TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood, 104(1), 135-142.

    Zweier, J. L. (1988). Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. Journal of Biological Chemistry, 263(3), 1353-1357.

    下載圖示
    QR CODE