簡易檢索 / 詳目顯示

研究生: 林信宏
Hsin-Hung Lin
論文名稱: 多通道頻譜分割光源應用於新型32×32光波長交換網路之效能分析
Performance Analysis of Applying A Multiple Spectrum-Sliced Light Source to A Novel 32×32 Optical Wavelength Switching Network
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 144
中文關鍵詞: 頻譜分割光纖環型結構波長交換開關網路分波多工2×2光波長交換開關訊號與雜訊比多通道多波長
英文關鍵詞: spectrum-sliced, fiber ring structure, wavelength switching network, WDM, 2×2 wavelength switch, signal-to-noise ratio, multi-channel multi-wavelength
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用8×8陣列波導光柵、半導體光放大器及2×2光纖耦合器組成一多通道多波長光纖環型頻譜分割光源,並結合新型32×32光纖波長交換網路系統。在多通道多波長環型頻譜分割光源,我們利用半導體光放大器經由電流供應器激發電子、電洞的躍遷及掉落,產生寬頻的放大自發性輻射光源,再經由8×8陣列波導光柵的多通道及分波特性,組合成一多通道多波長之環型頻譜分割光源,以建構應用於分波多工開關網路系統未來所需要的傳輸測試光源。
    在32×32光波長交換路由網路架構分析中,我們先利用2×2光波長交換開關,引入幾種交換網路結構做更進一步之分析。我們先探討這幾種交換網路在引進2×2光波長開關後的碰撞特性,進而選出Dilated Benes以及 Modified Dilated Benes兩種之光纖網路系統架構。由這兩種網路架構,我們以2×2光波長交換開關,從4×4、8×8、16×16、32×32的光波長交換路由網路結構推導出其訊號與雜訊比計算公式。最後,我們將整合多通道多波長頻譜分割光源及32×32光波長交換路由網路,分析其在不同資料傳輸速率的情況下之網路特性。

    In this thesis, we design a multi-channel multi-wavelength fiber ring spectrum sliced light source with a 8×8 array waveguide grating, semiconductor optical amplifier and 2×2 optical fiber coupler. The light source structure would be integrated into the novel 32×32 fiber optical wavelength switching network. In this spectrum sliced structure, we used the current source to excite the electron-hole pair that produce the broadband amplified spontaneous emission (ASE) light source. And then, we used the characteristic that multichannel and wavelength-division of 8×8 array waveguide grating to complete the multi-channel multi-wavelength fiber ring spectrum sliced light source to construct the transmitted test source for wavelength division multiplexed switching network systems.
    In the 32×32 optical wavelength routing switching network, we put the 2×2 optical wavelength switch into various traditional optical switching networks. First, we study the characteristic of blocking for the various traditional optical switching networks based on 2×2 optical wavelength switch and then choose the Dilated Benes and Modified Dilated Benes optical switching networks. We demonstrate the signal-to-noise ratio formulate for the 4×4, 8×8, 16×16 and 32×32 optical wavelength switching network based on 2×2 optical wavelength switch . Final, we integrated the multi-channel multi-wavelength fiber ring spectrum sliced light source and 32×32 optical wavelength routing switching network to analyze the performance for various data rate.

    Chapter 1 Introduction........................................1 Chapter 2 Multi-Channel Multi-Wavelength Spectrum-Sliced Light Source and Multi-Wavelength Fiber Ring Laser..................8 2-1 Introduction of Spectrum-Sliced Light Source and Fiber Ring Laser Source.............................................8 2-1-1 About Spectrum Sliced Light Source......................9 2-1-2 About Optical Fiber Laser...............................9 2-2 Theory of the Fiber Ring Cavity Structure with 1.3μm and 1.5μm Optical Amplifier......................................10 2-2-1 Theory of Spectrum-Sliced Light Source and Fiber Ring Laser Source for 1.5μm and 1.3μm SOA.........................11 2-2-2 Numerical Results......................................17 2-3 Experiment Set up and Analysis Result of the Spectrum Sliced Light Source and Fiber Ring Laser with Two Kinds of Optical Amplifier............................................17 2-3-1 Experimental Set up and Analysis Result of the Spectrum Sliced Light Source and Fiber Ring Laser for 1.5 μm SOA......18 2-3-2 Experimental Set up and Analysis Result of the Spectrum Sliced Light Source and Fiber Ring Laser for 1.3 μm SOA......20 2-4 Summary..................................................23 Chapter 3 Architecture of Optical Switching Network Based on 2×2 Optical Wavelength Switch..................................39 3-1 Introduction of the 2×2 Optical Wavelength Switch........39 3-2 Theory of Optical Switching Network Based on 2×2 Optical Wavelength Switch............................................40 3-2-1 Blocking and Non-blocking Analysis of the Various Switching Network Based on 2×2 Optical Wavelength switch.....41 3-2-2 Theory of Dilated Benes Switching Network Based on 2×2 Optical Wavelength Switch....................................46 3-2-2-1 4×4 Dilated Benes Based on 2×2 Optical Wavelength Switch.......................................................48 3-2-2-2 8×8 Dilated Benes Based on 2×2 Optical Wavelength Switch.......................................................54 3-2-2-3 16×16 Dilated Benes Based on 2×2 Optical Wavelength Switch.......................................................61 3-2-2-4 32×32 Dilated Benes Based on 2×2 Optical Wavelength Switch.......................................................62 3-2-3 Theory of Modified Dilated Benes Switching Network Based on 2×2 Optical Wavelength Switch............................64 3-2-3-1 4×4 Modified Dilated Benes Based on 2×2 Optical Wavelength Switch............................................64 3-2-3-2 8×8 Modified Dilated Benes Based on 2×2 Optical Wavelength Switch............................................69 3-2-3-3 16×16 Modified Dilated Benes Based on 2×2 Optical Wavelength Switch............................................72 3-2-3-4 32×32 Modified Dilated Benes Based on 2×2 Optical Wavelength Switch............................................73 3-3 Simulation and Analysis of Optical Switching Network.....74 3-4 Summary..................................................76 Chapter 4 Performance Analysis of Applying A Multiple Output Light Source to A Novel Optical Wavelength Switching Network.....................................................104 4-1 Introduction............................................104 4-2 BER and Noise Formulation for Networks..................105 4-3 Performance Analysis of the 32×32 Optical Wavelength Switching Network...........................................109 4-3-1 Dilated Benes Based on 2×2 Optical Wavelength Switch..110 4-3-2 Modified Dilated Benes Based on 2×2 Optical Wavelength Switch......................................................112 4-4 Summary.................................................114 Chapter 5 Conclusion........................................128 Reference...................................................130

    [1] T. Otani, M. Hayashi, M. Daikoku, K. Ogaki, Y. Nagao, K. Nishijima, M. Suzuki, “ Investigation of system upgradeability over installed fiber-optic cable using 40-Gb/s WDM signals toward multiterabit optical networks ” IEEE Journal of Lightwave Technology, vol. 21, pp. 947-952, 2003.
    [2] O. Gerstel, H. Raza, “ Merits of low-density WDM line systems for long-haul networks ” IEEE Journal of Lightwave Technology, vol. 21, pp. 2470-2475, 2003.
    [3] F. S. Yang, M. E.Marhic, L.G.Kazovsky, L.G., “ Nonlinear crosstalk and two countermeasures in SCM-WDM optical communication systems ” IEEE Journal of Lightwave Technology, vol. 18, pp. 512-520, 2000.
    [4] A. D. McCoy, B. C. Thomsen, M. Ibsen, D. J. Richardson, “ Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction ” IEEE Phontonics Technology Letters, vol. 16, pp. 680-682, 2004.
    [5] D. Sadot, I. Elhanany, “ Optical switching speed requirements for terabit/second packet over WDM networks ” IEEE Phontonics Technology Letters, vol. 12, pp. 440-442, 2000.
    [6] K. Akimoto, J. Kani, M. Teshima, K. Iwatsuki, “ Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network ” IEEE Journal of Lightwave Technology, vol. 21, pp. 2715-2722, 2003.
    [7] M. Zhao, G. Morthier, R. Baets, “ Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier ” IEEE Phontonics Technology Letters, vol. 14, pp. 390-392, 2002.
    [8] J. S. Lee, Y. C. Chung, T. H. Wood, J. P. Meester, C. A. Burrus, J. Stone, H. M. Presby and D. J. DiGiovanni, “ Spectrum-sliced fiber amplifier light source with a polarization-insensitive electro absorption modulator ” IEEE Phontonics Technology Letters, vol. 6, pp. 1035-1038, 1994.
    [9] L. T. Blair and S. A. Cassidy, “ Impact of new optical technology on spectrally-sliced access and data networks ” Bell Syst. Tech. J., vol. 11, pp. 46-55, 1993.
    [10] S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg, L. S. Smoot, “ Experimental demonstration of a passive optical subscriber loop architecture ” Electron. Lett., vol. 24, pp. 344-345, 1988.
    [11] M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, S. Hornung, “ LED spectral slicing for single-mode local loop applications ” Electron. Lett., vol. 24, pp. 389-390, 1988.
    [12] A. R. Hunwicks, L. Bickers and P. R. Rogerson, “ A spectrally-sliced single-mode optical transmission system installed in the UK local loopnetwork ” in Proc. GLOBECOM’89, pp. 1303-1307, 1989.
    [13] D. D. Sampson, W. T. Holloway, “ Transmission of 622 Mbit/s spectrum-sliced WDM channel over 60 km of nondispersion-shifted fibre at 1550 nm ” IEE Electronics Letters, vol.30, pp. 1767-1768, 1994.
    [14] Y. C. Chung, J. S. Lee, R. M. Derosier, D. J. DiGiovanni, “ 1.7 Gbit/s transmission over 165 km of dispersion-shifted fibre using spectrum-sliced fibre amplifier light source ” IEE Electronics Letters, vol.30, pp. 1427-1428, 1994.
    [15] L. Boivin, S. Taccheo, C. R. Doerr, P. Schiffer, L. W. Buhl, R. Monnard, W. Lin, “ 400 Gb/s transmission (40 Ch.×10 Gb/s) over 544 km from a spectrum-sliced supercontinuum source ” Optical Fiber Communication Conference, 2000, vol. 1, pp. 146-148, 2000.
    [16] Jung-Hee Han; Sun-Jong Kim; Jae-Seung Lee, “ Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing ” IEEE Phontonics Technology Letters, vol. 11, pp. 901-903, 1999.
    [17] Sun-Jong Kim; Jung-Hee Han; Jae-Seung Lee; Chang-Soo Park, “ Suppression of intensity noise in 10 Gbit/s spectrum-sliced incoherent light channel using gain-saturated semiconductor optical amplifiers ” IEE Electronics Letters, vol.35, pp. 1000-1001, 1999.
    [18] W. T. Holloway, A. J. Keating, D. D. Sampson, “ Multiwavelength source for spectrum-sliced WDM access networks and LAN's ” IEEE Phontonics Technology Letters, vol. 9, pp. 1014-1016, 1997.
    [19] F. Koyama, T. Yamatoya, K. Iga, “ Highly gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light source ” Indium Phosphide and Related Materials Conference, pp. 439-442, 2000.
    [20] G. J. Pendock, D. D. Sampson, “ Transmission performance of high bit rate spectrum-sliced WDM systems ” IEEE Journal of Lightwave Technology, vol. 14, pp. 2141-2148, 1996.
    [21] D. K. Jung, C. J. Youn, H. G. Woo, Y. C. Chung, “ Spectrum-sliced bidirectional WDM PON ” Optical Fiber Communication Conference, vol.2, pp. 160-162, 2000.
    [22] J. Capmany, D. Pastor, B. Ortega, “ Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing ” IEE Electronics Letters, vol.35, pp. 494-495, 1999.
    [23] D. D. Sampson, W. T. Holloway, “ 100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems ” IEE Electronics Letters, vol.30, pp. 1611-1612, 1994.
    [24] A. Bellemare, M. Karasek, M. Rochette, S. LRochelle, M. Tetu, “ Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid ” IEEE Journal of Lightwave Technology, vol. 18, pp. 825-831, 2000.
    [25] F. W. Tong, W. Jin, D. N. Wang, P. K. A. Wai, “ Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm ” IEE Electronics Letters, vol.40, pp. 594-595, 2004.
    [26] N. Park, P. F. Wysocki, “ 24-line multiwavelength operation of erbium-doped fiber-ring laser ” IEEE Phontonics Technology Letters, vol. 8, pp. 1459-1461, 1996.
    [27] J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “ Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters ” IEEE Phontonics Technology Letters, vol. 8, pp. 60-62, 1996.
    [28] R. Slavik, S. LaRochelle and M. Karasek, “ High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band ” Opt. Communication, vol. 206, pp. 365-371,2002.
    [29] S. Yamashita, T. Baba, “ Spacing-tunable multiwavelength fibre laser ” IEE Electronics Letters, vol.37, pp. 1015-1017, 2001.
    [30] X. P. Dong, Shenping Li; K. S. Chiang, M. N. Ng, B. C. B. Chu, “ Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror ” IEE Electronics Letters, vol.36, pp. 1609-1610, 2000.
    [31] Yong Wook Lee, Jaehoon Jung, Byoungho Lee, “ Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter ” IEEE Phontonics Technology Letters, vol. 16, pp. 54-56, 2004.
    [32] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, H. Avramopoulos, “ Multiwavelength and power equalized SOA laser sources ” IEEE Phontonics Technology Letters, vol. 14, pp. 693-695, 2002.
    [33] Junqiang Sun, Ying Zhang, Xinliang Zhang, “ Multiwavelength lasers based on semiconductor optical amplifiers ” IEEE Phontonics Technology Letters, vol. 14, pp. 750-752, 2002.
    [34] Young-Geun Han, Chang-Seok Kim, J. U. Kang, Un-Chul Paek, Y. Chung, “ Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings ” IEEE Phontonics Technology Letters, vol. 15, pp. 383-385, 2003.
    [35] C. S. Kim, R. M. Sova and J. U. Kang, “ Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter ” Opt. Communication, vol. 218, pp. 291-295,2003.
    [36] I. Y. Khrushchev, J. D. Bainbridge, J. E. A. Whiteaway, I. H. White, R. V. Penty, “ Multiwavelength pulse source for OTDM/WDM applications based on arrayed waveguide grating ” IEEE Phontonics Technology Letters, vol. 11, pp. 1659-1661, 1999.
    [37] H. Sanjoh, H. Yasaka, Y. Sakai, K. Sato, H. Ishii, Y. Yoshikuni, “ Multiwavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed waveguide grating filter ” IEEE Phontonics Technology Letters, vol. 9, pp. 818-820, 1997.
    [38] H. L. An, X. Z. Lin, H. D. Liu, E. Y. B. Pun and P. S. Chung, “ Multiwavelength erbium-doped fiber laser incorporating a double-pass Mach-Zender interferometer ” Microwave Opt. Tecnology, vol. 20, pp. 270-272, 1999.
    [39] H. L. An, X. Z. Lin, E. Y. B. Pun and H. D. Liu, “Multiwavelength operation of an erbium-doped fiber laser using a double-pass Mach-Zender comb filter ” Opt. Communication, vol. 169, pp. 159-165, 1999.
    [40] J. J. Veselka, S. K. Korotky, “ A multiwavelength source having precise channel spacing for WDM systems ” IEEE Phontonics Technology Letters, vol. 10, pp. 958-960, 1998.
    [41] S. Yamashita, K. Hotate, “ Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen ” IEE Electronics Letters, vol.32, pp. 1298-1299, 1996.
    [42] J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “ Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters ” IEEE Phontonics Technology Letters, vol. 8, pp. 60-62, 1996.
    [43] Xuewen Shu, Shan Jiang, Dexiu Huang, “ Fiber grating Sagnac loop and its multiwavelength-laser application ” IEEE Phontonics Technology Letters, vol. 12, pp. 980-982, 2000.
    [44] D. Wei, T. Li, Y. Zhao and S. Jian, “ Multiwavelength erbium-doped fiber ring lasers with overlap written fiber Bragg gratings ” Opt. Letter, vol. 25, pp. 1150-1152,2000.
    [45] J. Sun, J. Qiu and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning ” Opt. Communication, vol. 182, pp. 193-197, 2000.
    [46] X. P. Dong, Li Shenping K. S. Chiang, M. N. Ng, b. C. B. Chu, “ Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror ” IEE Electronics Letters, vol. 36, pp. 1609-1610, 2000.
    [47] A. Bellemare, M. Karasek, M. Rochette, S. LRochelle, M. Tetu, “ Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid ” IEEE Journal of Lightwave Technology, vol. 18, pp. 825-831, 2000.
    [48] O. Graydon, W. H. Loh, R. I. Laming, L. Dong, “ Triple-frequency operation of an Er-doped twincore fiber loop laser ” IEEE Phontonics Technology Letters, vol. 8, pp. 63-65, 1996.
    [49] Li Shenping, Hao Ding, and K. T. Chan, “ Erbium-doped fibre lasers for dual wavelength operation ” IEE Electronics Letters, vol. 33, pp. 50-53, 1997.
    [50] J. M. Battiato, T. F. Morse, R. K. Kostuk, “ Dual-wavelength common-cavity codoped fiber laser ” IEEE Phontonics Technology Letters, vol. 9, pp. 913-915, 1997.
    [51] S. Yamashita, K. Hsu, W. H. Loh, “ Miniature erbium:ytterbium fiber Fabry-Perot multiwavelength lasers ” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1058-1064, 1997.
    [52] A. J. Poustie, N. Finlayson, “ Multiwavelength fiber laser using a spatial mode beating filter ” Opt. Letter, vol. 19, pp. 716-718, 1994.
    [53] N. Park, P. F. Wysocki, “ 24-line multiwavelength operation of erbium-doped fiber-ring laser ” IEEE Phontonics Technology Letters, vol. 8, pp. 1459-1461, 1996.
    [54] C. A. Brackett, A. S. Acampora, J. Sweitzer, G. Tangonan, M. T. Smith, W. Lennon, K.-C. Wang, R. H. Hobbs, “ A scalable multiwavelength multihop optical network: a proposal for research on all-optical networks ” IEEE Journal of Lightwave Technology, vol. 11, pp. 736-753, 1993.
    [55] K. Okamoto, K. Takiguchi, Y. Ohmori, “ 16-channel optical add/drop multiplexer using silica-based arrayed-waveguide gratings ” IEE Electronics Letters, vol. 31, pp. 723-724, 1995.
    [56] Haifeng Li, Chua-Han Lee, Wenhua Lin, L. S. Didde, Yung-Jui Chen; D. Stone, “ 8-wavelength photonic integrated 2×2 WDM cross-connect switch using 2×N phased-array waveguide grating (PAWG) multi/demultiplexers ” IEE Electronics Letters, vol. 33, pp. 592-594, 1997.
    [57] C. R. Doerr, L. W. Stulz, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, J. V. Gates, S. Shunk, A. E. White, “ 40-wavelength add drop filter ” IEEE Phontonics Technology Letters, vol. 11, pp. 1437-1439, 1999.
    [58] J. E. Ford, V. A. Aksyuk, D. J. Bishop, J. A. Walker, “ Wavelength add-drop switching using tilting micromirrors ” IEEE Journal of Lightwave Technology, vol. 17, pp. 904-911, 1999.
    [59] Pu. Chuan L. Y. Lin, E. L. Goldstein, R. W. Tkach, “ Client-configurable eight-channel optical add/drop multiplexer using micromachining technology ” IEEE Phontonics Technology Letters, vol. 12, pp. 1665-1667, 2000.
    [60] N. A. Riza, S. Yuan, “ Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches ” IEEE Journal of Lightwave Technology, vol. 17, pp. 1575-1584, 1999.
    [61] F. Bilodeau, d. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “ An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings ” IEEE Phontonics Technology Letters, vol. 7, pp. 388-390, 1995.
    [62] L. Dong, p. Hua, T. A. Birks, L. Reekie, P. S. J. Russell, “ Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler ” IEEE Phontonics Technology Letters, vol. 8, pp. 1656-1658, 1996.
    [63] K. Hsu, C. M. Miller, and Y. Bao, “ Fiber Fabry-Perot interferometers with very low polarization sensitivity ” Appl. Opt., vol. 33, pp. 6617-6620, 1994.
    [64] S. Suzuki, A. Himeno, M. Ishii, “ Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches ” IEEE Journal of Lightwave Technology, vol. 16, pp. 650-655, 1998.
    [65] E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “ Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers ” IEEE Journal of Lightwave Technology, vol. 14, pp. 2530-2536, 1996.
    [66] C. Kostrzewa, R. Moosburger, G. Fischbeck, B. Schuppert, K. Petermann, “ Tunable polymer optical add/drop filter for multiwavelength networks ” IEEE Phontonics Technology Letters, vol. 9, pp. 1487-1489, 1997.
    [67] M. Scobey and R. Hallock, “ Hybrid thin ilm WDM and optical switch devices for optical add/Drop ” in Tech. Dig. OFC 2000, vol. 2, pp. 335-337, 2000.
    [68] F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, S. Westenhofer, “ Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3 ” IEEE Journal of Lightwave Technology, vol. 12, pp. 1192-1196, 1994.
    [69] D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S.-M. Hwang, A. E. Willner, K. D. Li, “ Evolution of the acousto-optic wavelength routing switch ” IEEE Journal of Lightwave Technology, vol. 14, pp. 1005-1019, 1996.
    [70] W. Warzanski, F. Heismann, and R. C. Alferness, “ Polarization -independent electrooptically tunable narrow-band wavelength filter ” Appl. Phys. Letter, vol. 53, pp. 13-15, 1988.
    [71] Z. Tang, O. Eknoyan, H. F. Taylor, “ Polarisation-independent electro-optically tunable wavelength filter in LiTaO3 ” IEE Electronics Letters, vol. 30, pp. 1758-1759, 1994.
    [72] Pingsheng Tang, O. Eknoyan, H. F. Taylor, “ Rapidly tunable polarisation independent optical add drop multiplexer in Ti:LiNbO3 ” IEE Electronics Letters, vol. 38, pp. 242-244, 2002.
    [73] Fenghai Liu, R. J. S. Pedersen, P. Jeppesen, “ Novel 2×2 multiwavelength optical cross connects based on optical add/drop multiplexers ” IEEE of Photonics Technology Letters, vol. 12, pp. 1246-1248, 2000.
    [74] Wenlu Chen, Zhonghua Zhu, Yung Jui Chen, J. Sun, B. Grek, K. Schmidt, “ Monolithically integrated 32 /spl times/ four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit ” IEEE of Photonics Technology Letters, vol. 15, pp. 1413-1415, 2003.
    [75] Fenghai Liu, Xueyan Zheng, R. J. S. Pedersen, P. Jeppesen, “New types of 2×2 wavelength-switching blocks for optical cross-connects ” IEEE of Photonics Technology Letters, vol. 13, pp. 493-495, 2001.
    [76] Shyh-Lin Tsao, Jiang-Hung Tien, Chun-Wei Tsai, “ Simulations on an SOI grating-based optical add/drop multiplexer ” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 1277-1284, 2002.
    [77] D.K. Jung, H. Kim, K.H. Han, Y.C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” IEE Electronics Letters, vol. 37, pp. 308-309, 2001.
    [78] D.K. Jung, S. K. Shin, H.G. Woo, Y.C. Chung, “Wavelength-tracking technique for spectrum-sliced WDM passive optical network,” IEEE of Photonics Technology Letters, vol. 12, pp. 338-340, 2000.
    [79] D. K. Jung, S. K. Shin, C.H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photonics Technology Letters, vol. 10, pp. 1334–1336, 1998.
    [80] H.F. Taylor, “Tunable spectral slicing filters for dense wavelength-division multiplexing,” IEEE Journal of Lightwave Technology, vol. 21, pp. 837-847, 2003.
    [81] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electronics Letters, vol. 37, pp. 1181-1182, 2001.
    [82] Peng-Chun Peng, Jia-He Lin, Hong-Yih Tseng, Sien Chi, “ Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser ” IEEE Photonics Technology Letters, vol. 16, pp. 230–232, 2004.
    [83] Y. Takahashi, T. Yoshino, “ Fiber ring laser with flint glass fiber and its sensor applications ” IEEE Journal of Lightwave Technology, vol. 13, pp. 1445-1451, 1999.
    [84] H. Takahashi, H. Toba, Y. Inoue, “ Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer ” IEE Electronics Letters, vol. 30, pp. 44-45, 1994.
    [85] Jungho Kim, Byoungho Lee, “ Independently switchable bidirectional optical cross connects ” IEEE Photonics Technology Letters, vol. 12, pp. 693–695, 2000.
    [86] Xiaojun Cao, V. Anand, Yizhi Xiong, Chunming Qiao, “ A study of waveband switching with multilayer multigranular optical cross-connects ” IEEE Journal of Selected Areas in Communications, vol. 21, pp. 1081–1095, 2003.
    [87] Q. Lai, W. Hunziker, H. Melchior, “ Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response ” IEEE Photonics Technology Letters, vol. 10, pp. 681–683, 1998.
    [88] Ce Zhou Zhao, Ai Hua Chen, E. K. Liu, G. Z. Li, “Silicon-on- insulator asymmetric optical switch based on total internal reflection ” IEEE Photonics Technology Letters, vol. 9, pp. 1113–1115, 1997.
    [89] M. Kando, N. Takadao, K. Komatsu, and Y. Ohta, “32 switch elements integrated low-crosstalk LiNbO3 4×4 optical martic switch”, in Proc. IOOC-ECOC’85, pp. 361-364.
    [90] R. A. Spanke and V. E. Banes, “N-stage planar optical permutation network”, Appl. Opt., vol. 26, pp. 1226-1229, 1987.
    [91] V. E. Banes, Mathematical Theory of Connecting Networks and Telephone Traffic. New York: Academic, 1956.
    [92] K. Padmanabhan and A. Netravali, “Dilated network for photonic switching”, IEEE Trans. Commun., vol. 35, pp. 1357-1367, 1987.
    [93] J. E. Watson, M> A. Milborodt, K. Bahadori, M. F. Dautartas, C. T. Kemmerer, D. T. Moser, A. W. Schelling, T. O. Murphy, J. J. Veselka, and D. A. Herr, “A low-voltage 8×8 Ti:LiNbO3 switch with a dilated-Banes architecture”, IEEE Journal of Lightwave Technology, vol. 8, pp. 794-801, 1990.
    [94] S. S. Wangner and H. L. Lemberg, “Technology and system issues for WDM-based fiber loop architecture”, IEEE Journal of Lightwave Technology, vol. 7, pp. 1759-1768, 1989.
    [95] B. Glance, “Large-capacity local access network”, IEEE Photon. Technol. Lett., vol. 5, pp. 1448-1451, 1993.
    [96] P. P. Iannone, N. J. Frigo, and T. E. Darcie, “WDM passive-optical-network architecture with bidirectional optical spectral slicing”, in Conf. Optical Fiber Communication, OSA Tech. Dig. Ser. Washington, DC: Opt. Soc. Amer., 1995, vol. 8, pp. 51-53.
    [97] T. Hasegawa, and O. Ishida, “FDM star network featuring lightwave carrier distribution and frequency routing”, in Proc. Integrated Optics and Optical Fiber Communication, 1995, paper WC2-3.
    [98] M. C. Farries, A. C. Carter, G. G. Jones, and I. Bennion, “Tunable multiwavelength semiconductor laser with single fiber output”, Electron. Lett., vol. 27, pp. 1498-1499, 1991.
    [99] M. Zirngibl, B. Glance, L. W. Stulz, C. H. Joyner, G. Raybon, and I. P. Kaminow, “Characterization of a multiwavelength waveguide grating router laser”, IEEE Photon. Technol. Lett., vol. 6, pp. 1082-1084, 1994.
    [100] J. B. D. Soole, K. Pountke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, R. Bhat, C.Caneau, and M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: A new semiconductor laser for WDM applications”, Electron. Lett., vol. 28, pp. 1805-1807, 1992.
    [101] H. Takahashi, H. Toba, and Y. Inoue, “Multiwavelength ring laser composed of EDFA’s and an arrayed-waveguide wavelength multiplexer”, Electron. Lett., vol. 30, pp. 44-45, 1994.
    [102] K. Tamura, E. Yoshida, and M. Nakazawa, “ Generation of 10 GHz pulse trains at 16 wavelengths by spectral slicing a high power femtosecond source”, Electron. Lett., vol. 32, pp. 1691-1693, 1996.
    [103] T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontiuum in optical fibers”, Electron. Lett., vol. 28, pp. 1805-1807, 1992.
    [104] M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications”, IEEE Photon. Technol. Lett., vol. 8, pp. 721-723, 1996.
    [105] D. K. Jung, S. K. Shin, C. -H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques”, IEEE Photon. Technol. Lett., vol. 10, pp. 1334-1336, 1998.
    [106] H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection”, J. Lightwave Technol., vol. 14, pp. 1097-1105, 1996.
    [107] J. Zhou, R. Cadeddu, E. Casaccia, C. Cavazzoni, and M. J. O’Mahony, “Crosstalk in multiwavelength optical cross-connect networks”, J. Lightwave Technol., vol. 14, pp. 1423-1435, 1996.
    [108] K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “ Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions”, J. Lightwave Technol., vol. 12, pp. 1423-1439, 1994.
    [109] J. L. Gimlett and N. K. Xheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems”, J. Lightwave Technol., vol. 7, pp. 888-895, 1989.
    [110] R. D. Feldman, “Crosstalk and loss in wavelength division multiplexed systems employing spectral slicing”, J. Lightwave Technol., vol. 15, pp. 1823-1831, 1997.

    QR CODE