簡易檢索 / 詳目顯示

研究生: 周柏宇
Zhou, Bo-Yu
論文名稱: 可控型態的鉑錫合金奈米線作為有效的甲醇及乙醇氧化反應之電催化劑
Pt3Sn nanowires with controllable form as efficient methanol/ethanol oxidation electrocatalysts
指導教授: 王禎翰
Wang, Jeng-Han
口試委員: 王禎翰
Wang, Jeng-Han
李積琛
Lee, Chi-Shen
羅夢凡
Luo, Meng-Fan
口試日期: 2021/06/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 甲醇氧化乙醇氧化電化學奈米線粉末式 X 光繞射儀X 光光電子光譜儀
英文關鍵詞: MOR, EOR, Electrochemistry, Platinum, Tin, Nanowire, XRD, XPS
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101039
論文種類: 學術論文
相關次數: 點閱:233下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

直接酒精燃料電池(DAFC)是一種對環境友善且高效的能量轉換裝置。本論文主要講述陽極材料Pt3Sn奈米線通過雙功能效應及結構效應來優化,並應用在直接酒精燃料電池上。
Pt3Sn奈米線是通過甲酸還原法製備的,並透過場發射式掃描電子顯微鏡 ( FESEM )、穿透式電子顯微鏡 ( TEM ) 、粉末式X光繞射儀 ( XRD )、能量散射光譜儀 ( EDS ) 、X光光電子光譜儀 ( XPS ) 進行物理及化學性質鑑定。活性及穩定性則是使用甲醇氧化反應(MOR)和乙醇氧化反應(EOR)來測試。電化學的結果顯示出雙金屬Pt3Sn觸媒具有比純Pt更好的性能,是因為雙功能機制。奈米線的結構效應顯示出更進一步的增強,藉由通過改變製造過程中的反應物濃度以及反應時間進行優化。以較低濃度製備的樣品(LC-Pt3Sn-144H)需要更長的反應時間才能獲得最長的奈米線,並顯示出最佳的甲/乙醇氧化反應活性和穩定性。高濃度樣品(HC-Pt3Sn-48H)可以顯著的減少製造時間以達到相似的催化劑結構和電化學性能。本論文所設計的觸媒以雙功能機制和結構效應應證,並展示出有效的方法優化製成。

Direct alcohol fuel cells (DAFCs) are environmental friendly and high-efficiency power devices.The present thesis aims to optimize the anodic materials Pt3Sn nanowires (Pt3Sn-NWs) through bifunctional mechanism and structural effects in the application of DAFCs.
Pt3Sn NWs are fabricated by formic acidic reduction method and characterized by FE-SEM, TEM, XRD, EDS and XPS to identify their chemical and physical properties. The activity and stability of methanol and ethanol oxidation reactions (MOR and EOR) are further examined. The electrocatalytic results show that bimtallic Pt3Sn catalysts have better performance than pure Pt due to the bifunctional mechanism. The structural effect of NWs shows additional enhancement that can be optimized by varying the concentrations of reagnets and reaction times in the fabrication process. The sample fabricated with lower concentration requires longer reaction time (LC-Pt3Sn-144H) to achieve the highest length of NWs and show the best MOR/EOR activitly and stability. High concentration can significantly reduce the fabrication time (HC-Pt3Sn-48H) to reach the similar catalyst structure and electrochemical performance. The present study demonstrates the design of catalysts through bifunctional mechanism and structural effect, and shows an effective way to optimize the fabrication process.

目錄 第一章 緒論 1 1-1 前言 1 1-2 燃料電池 2 1-2-1 燃料電池簡介 2 1-2-2 燃料電池分類 3 1-3 直接酒精燃料電池(DAFC) 4 1-3-1 直接甲/乙醇燃料電池(DMFC/DEFC) 4 1-3-2 直接甲醇燃料電池反應機構 5 1-3-3 直接乙醇燃料電池反應機構 7 1-4 陽極觸媒 9 1-4-1 Pt 9 1-4-2 Bimetal 10 1-4-3 Nanowire 13 1-5 實驗動機 16 第二章 實驗設備及流程 17 2-1 觸媒製備 19 2-1-1 奈米粒子(Pt3SnNPs)合成 20 2-1-2 奈米線(Pt3SnNWs)合成 22 2-2 觸媒鑑定 26 2-2-1 場發射掃描式電子顯微鏡 27 (Field-Emission Scanning Electron Microscope;FESEM) 27 2-2-2 穿透式電子顯微鏡 28 ( Transmission Electron Microscopy ; TEM) 28 2-2-3 粉末式X光繞射儀 29 (Powder X – Ray Driffactometer; XRD) 29 2-2-4 能量散射光譜儀 31 (Energy Dispersine X – Ray Spectrometer; EDS) 31 2-2-5 X光光電子光譜儀 32 (X – Ray Photoelectron Spectroscopy; XPS) 32 2-3 電化學分析 33 2-3-1 工作電極製備 34 2-3-2 循環伏安法 (Cyclic Voltammetry; CV) 35 2-3-3 計時安培法 (Chonoamperometry; CA) 37 第三章 結果與討論 38 3-1 不同構型之比較 39 3-1-1 FESEM 40 3-1-2 電化學分析 41 3-1-3 氫吸脫附 (ECSA) 41 3-1-4 甲醇氧化反應(MOR) 44 3-1-5 乙醇氧化反應(EOR) 49 3-1-6 電催化穩定性比較 54 3-2 不同時間之觸媒鑑定 57 3-2-1 FESEM分析 58 3-2-2 XRD分析 60 3-2-3 EDS分析 64 3-2-4 XPS分析 65 3-2-5 電化學分析 71 3-2-6 氫吸脫附 (ECSA) 71 3-2-7 甲醇氧化反應 74 3-2-8 甲醇電催化穩定度比較 79 3-2-9 乙醇氧化反應 81 3-2-10 乙醇電催化穩定度比較 84 3-3 不同濃度之觸媒鑑定 86 3-3-1 FESEM 87 3-3-2 HRTEM 89 3-3-3 XRD 91 3-3-4 EDX 94 3-3-5 XPS 95 3-3-6 電化學分析 100 3-3-7 氫吸脫附(ECSA) 100 3-3-8 甲醇氧化反應 102 3-3-9 甲醇電催化穩定度比較 106 3-3-10 乙醇氧化反應 108 3-3-11 乙醇電催化穩定度比較 111 第四章 結論 113 參考文獻 114

1. Steele, B.C. and A. Heinzel, Materials for fuel-cell technologies, in Materials for sustainable energy: a collection of peer-reviewed Research and review articles from nature publishing group. 2011, World Scientific. p. 224-231.
2. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
3. MacDonald, J., et al., Modification of platinum surfaces by spontaneous deposition: Methanol oxidation electrocatalysis. international journal of hydrogen energy, 2008. 33(23): p. 7048-7061.
4. Sieben, J.M. and M.M.E. Duarte, Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. International Journal of Hydrogen Energy, 2011. 36(5): p. 3313-3321.
5. Langhus, D.L., Analytical Electrochemistry, (Wang, Joseph). 2001, ACS Publications.
6. Housmans, T. and M. Koper, Methanol oxidation on stepped Pt [n (111)×(110)] electrodes: a chronoamperometric study. The journal of physical chemistry b, 2003. 107(33): p. 8557-8567.
7. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
8. Wang, H.-F. and Z.-P. Liu, Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. Journal of the american chemical society, 2008. 130(33): p. 10996-11004.
9. Chang, S.C., L.W.H. Leung, and M.J. Weaver, Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. Journal of Physical Chemistry, 1990. 94(15): p. 6013-6021.
10. Raskó, J., et al., FTIR and mass spectrometric study of the interaction of ethanol and ethanol–water with oxide-supported platinum catalysts. Applied Catalysis A: General, 2006. 299: p. 202-211.
11. Zhou, W., et al., Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochimica Acta, 2014. 123: p. 233-239.
12. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
13. Wang, H., Z. Jusys, and R. Behm, Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. Journal of Power Sources, 2006. 154(2): p. 351-359.
14. Li, M., et al., Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. Journal of the American Chemical Society, 2013. 135(1): p. 132-141.
15. Yuan, X., et al., Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019. 12(2): p. 429-436.
16. Xu, Y., et al., Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Research, 2019. 12(5): p. 1173-1179.
17. Wang, C., et al., A general strategy for synthesizing FePt nanowires and nanorods. Angewandte Chemie, 2007. 119(33): p. 6449-6451.
18. Stamenkovic, V.R., et al., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature materials, 2007. 6(3): p. 241-247.
19. Wu, F., et al., PtCu–O highly excavated octahedral nanostructures built with nanodendrites for superior alcohol electrooxidation. Journal of Materials Chemistry A, 2019. 7(14): p. 8568-8572.
20. Zhang, X.-J., et al., Highly active carbon nanotube-supported Ru@ Pd core-shell nanostructure as an efficient electrocatalyst toward ethanol and formic acid oxidation. Molecular Catalysis, 2017. 436: p. 138-144.
21. Dutta, A. and J. Ouyang, Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catalysis, 2015. 5(2): p. 1371-1380.
22. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
23. Frelink, T., W. Visscher, and J. Van Veen, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surface Science, 1995. 335: p. 353-360.
24. Demirci, U.B., Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. Journal of Power Sources, 2007. 173(1): p. 11-18.
25. Stevanovic, S., et al., Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts. The Journal of Physical Chemistry C, 2014. 118(1): p. 278-289.
26. Liu, Y., et al., Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol. Acs Catalysis, 2011. 1(12): p. 1719-1723.
27. Erini, N., et al., Ethanol electro-oxidation on ternary platinum–rhodium–tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase. ACS Catalysis, 2014. 4(6): p. 1859-1867.
28. Zhu, Y., et al., Structurally Ordered Pt3Sn Nanofibers with Highlighted Antipoisoning Property as Efficient Ethanol Oxidation Electrocatalysts. ACS Catalysis, 2020. 10(5): p. 3455-3461.
29. Chen, J., et al., Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. Journal of the American Chemical Society, 2004. 126(35): p. 10854-10855.
30. Cademartiri, L. and G.A. Ozin, Ultrathin nanowires—a materials chemistry perspective. Advanced Materials, 2009. 21(9): p. 1013-1020.
31. Williams, M.C., Status and promise of fuel cell technology. Fuel Cells, 2001. 1(2): p. 87-91.
32. Tan, Y., et al., Au/Pt and Au/Pt 3 Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chemical Communications, 2011. 47(42): p. 11624-11626.
33. Koenigsmann, C. and S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy & Environmental Science, 2011. 4(4): p. 1161-1176.
34. Shao, Y., G. Yin, and Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007. 171(2): p. 558-566.
35. Meng, H., et al., Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation. Nanoscale, 2011. 3(12): p. 5041-5048.
36. Colombi Ciacchi, L., W. Pompe, and A. De Vita, Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study. Journal of the American Chemical Society, 2001. 123(30): p. 7371-7380.
37. Sun, S., et al., Template‐and surfactant‐free room temperature synthesis of self‐assembled 3D Pt nanoflowers from single‐crystal nanowires. Advanced Materials, 2008. 20(3): p. 571-574.

38. Lei, F., et al., One-pot synthesis of Pt/SnO2/GNs and its electro-photo-synergistic catalysis for methanol oxidation. International Journal of Hydrogen Energy, 2016. 41(1): p. 255-264.
39. Velázquez-Palenzuela, A., et al., Sn-modified carbon-supported Pt nanoparticles synthesized using spontaneous deposition as electrocatalysts for direct alcohol fuel cells. International journal of hydrogen energy, 2013. 38(36): p. 16418-16426.
40. Tripković, A.V., et al., Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochimica Acta, 2002. 47(22-23): p. 3707-3714.
41. Yiming Zhu,L.B.,et al., Subnanometer PtRh Nanowire with Alleviated Poisoning Effect and Enhanced C–C Bond Cleavage for Ethanol Oxidation Electrocatalysis. ACS Catalysis, 2019. 9(8):p. 6607–6612.

下載圖示
QR CODE