研究生: |
陳冠廷 |
---|---|
論文名稱: |
多目標演化式演算法之多狀態適應性參數調整機制 |
指導教授: | 蔣宗哲 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 多目標最佳化問題 、演化式演算法 、差分演化式演算法 、動態參數調整 |
論文種類: | 學術論文 |
相關次數: | 點閱:518 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多目標最佳化問題在現實生活中隨處可見,像是生產排程與規劃問題,目標通常是讓生產效能最大化而耗費成本最低。此類問題的目標通常是相互衝突的,因而求解此類最佳化問題的解集合是相當困難又耗時的。演化式演算法 ( evolutionary algorithm ) 利用族群演化的特性求取 (近似) 最佳解集合,相當適合在多目標最佳化這種類型問題上使用,因此已被廣泛使用與發展。可是演化式演算法在不同的問題上需要不同的參數設定,才能獲得較佳的效能。所以如何讓使用者在參數調校的負擔減少,是一個十分重要的項目。
本論文針對 MOEA/D-AMS 演算法中的差分式演算法主要參數 F 與 CR執行動態調整,兩者分別影響子代和親代的差異程度與選擇子代的基因交配機率。本論文使用MOEA/D-AMS 收斂度評估機制作演化時期參考分類個體,佐以三種狀態參數調整機制去對應個體不同演化時期的調整。目的是希望族群中的個體能夠在不同演化時期獲得最恰當的調整方法來增進效能。最後實驗部分則會評比演算法在17個多目標問題的效能,與其他具動態參數調整機制在處理不同型態問題時的分析和討論。
[1] I. Kacem, S. Hammadi, and P. Borne, ”Approach by Localization and Multiobjective Evolutionary Optimization for Flexible Job-shop Scheduling Problems.” IEEE Transactions on Systems, Man, and Cybernetics, Part C 32 (1), 1–13, 2002.
[2] S. Chaudhuri, K. Deb, “An Interactive Evolutionary Multi-objective Optimization and Decision Making Procedure,” Applied Soft Computing, Vol. 10, pp. 496–511, 2010.
[3] N. Beume, B. Naujoks, M. Emmerich, ”SMS-EMOA: Multiobjective selection based on dominated hypervolume,” European Journal of Operational Research, 181 (3), 1653–1669, 2007
[4] Y. J. Lin, “A numerical study on parameter control mechanisms,” M. S. thesis, Department of Computer Science and Information, National Taiwan Normal University, Taipei, Taiwan, 2012.
[5] C. N. Chen, “A Multiobjective Evolutionary Algorithm with Adaptive Parameter Control,” M. S. thesis, Department of Computer Science and Information, National Taiwan Normal University, Taipei, Taiwan, 2011.
[6] T. C. Chiang, Y.P. Lai, “MOEA/D-AMS: Improving MOEA/D by an adaptive mating selection mechanism,” IEEE Congress on Evolutionary Computation, pp. 1473 - 1480, 2011.
[7] Q. Zhang, and H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Transactions on Evolutionary Computation, Vol. 11, No.6, pp. 712–731, 2007.
[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182–197, 2002.
[9] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization,” Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp.95–100, 2002.
[10] H. Li, And Q.Zhang, “Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II.” IEEE Transactions on Evolutionary Computation, 13 (2), 284-302, 2009.
[11] K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, (Natural Computing Series) Springer–Verlag New York, Inc., Secaucus, NJ, 2005.
[12] J. Zhang, A. C. Sanderson, “JADE: Adaptive Differential Evolution with Optional External Archive,” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, pp. 945-958, 2009.
[13] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 124–141, 1999.
[14] T. C. Chiang, C. N. Chen, Y. C. Lin, “Parameter Control Mechanisms in Differential Evolution: A Tutorial Review and Taxonomy,” IEEE Symposium on Differential Evolution, 2013.
[15] Z. Yang, X. Yao, J. He, “Making a Difference to Differential Evolution,” Advance in Metaheuristics for Hard Optimization, Vol. 1, pp. 397– 414, 2008.
[16] A. K. Qin, P. N. Suganthan, “Self-adaptive Differential Evolution Algorithm for Numerical Optimization,” IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1785–1791, 2005.
[17] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 6, pp. 646–657, 2006.
[18] Q. Pan, P. N. Suganthan, L. Wang, L. Gao, R. Mallipeddi, “A Differential Evolution Algorithm with Self-adapting Strategy and Control Parameters,” Computers & Operations Research, Vol. 38, No. 1, pp. 394 – 408, 2011.
[19] Z. Yang, K. Tang, X. Yao, “Self-adaptive Differential Evolution with Neighborhood Search,” IEEE Congress on Evolutionary Computation, Vol. 1, pp. 1110–1116, 2008.
[20] L. Jia, W. Gong, H. Wu, “An Improved Self-adaptive Control Parameter of Differential Evolution for Global Optimization,” Computational Intelligence and Intelligent systems, Vol. 51, Part 5, pp. 215–224, 2009..
[21] A. Nobakhti, H. Wang, “A Simple Self-adaptive Differential Evolution Algorithm with Application on the ALSTOM Gasifier,” Applied Soft Computing, Vol. 8, No. 1, pp. 350–370, 2008.
[22] M. G. H. Omran, A. Salman, A. P. Engelbrecht, “Self-adaptive Differential Evolution,” Computational Intelligence and Security, Vol. 3801, pp.192–199, 2005.
[23] W. Qian, A. Li, “Adaptive Differential Evolution Algorithm for Multiobjective Optimization Problems,” Applied Mathematics and Computation, Vol. 201, No. 1–2, pp. 431–440, 2008.
[24] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, “Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition,” The School of Computer Science and Electronic Engineering, University of Essex (Technical Report CES-487), 2008.