簡易檢索 / 詳目顯示

研究生: 葉秦維
Ye, Cin-Wei
論文名稱: 摻雜鑭系元素(鏑,釓)氧化鋅與單層二(硫,硒)化鎢薄膜的光譜性質研究
Optical studies of lanthanide (Dy, Gd)-doped ZnO and monolayer W(S, Se)2 thin films
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 216
中文關鍵詞: 氧化鋅過渡金屬二硫屬化物拉曼散射光譜橢圓偏振光譜光譜性質
英文關鍵詞: ZnO, Transition metal dichalcogenides, Raman scattering spectroscopy, Spectroscopic ellipsometry, Optical properties
論文種類: 學術論文
相關次數: 點閱:157下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們量測摻雜(鏑,釓)氧化鋅薄膜的拉曼散射光譜、穿透光譜及橢圓偏振光譜,進而研究不同摻雜量對氧化鋅薄膜光譜性質的影響。此外,我們量測單層過渡金屬二硫屬化物薄膜(二硫化鎢和二硒化鎢)的拉曼散射光譜及橢圓偏振光譜,進而探討單層二硫化鎢和二硒化鎢薄膜的光譜性質。氧化鋅薄膜是用脈衝雷射沉積法製成在藍寶石基板上,摻雜鏑離子和釓離子的濃度範圍分別為1% ~ 10%及3% ~ 30%。單層二硫化鎢和二硒化鎢薄膜是用化學氣相沉積法製成在藍寶石基板上。這篇論文的目的是探討上述所有材料的晶格結構和電子結構。
我們發現純氧化鋅薄膜的拉曼散射光譜,顯示2個拉曼峰,其頻率位置為98.7 cm-1和437.1 cm-1,分別為E2(low)和E2(high)對稱性。隨著鏑離子和釓離子摻雜濃度增加,拉曼峰E2(low)和E2(high)的峰值強度會逐漸下降。在穿透光譜中發現,隨著鏑離子和釓離子摻雜濃度增加,(鏑,釓)氧化鋅薄膜在紫外光區的光穿透率會提高。在吸收能譜中發現,隨著鏑離子和釓離子摻雜濃度增加,氧化鋅薄膜的直接能隙值會受到鏑離子和釓離子的影響,產生偏移,其現象可被能帶隙變窄理論和伯斯坦-莫斯位移理論解釋。
我們發現單層二硫化鎢和二硒化鎢薄膜在532奈米雷射光激發下的拉曼散射光譜具有多種類的拉曼峰。在室溫的吸收能譜中發現,單層二硫化鎢和二硒化鎢薄膜具有明顯的激子A和B吸收峰。此外,我們分析了單層二硫化鎢和二硒化鎢薄膜的室溫直接能隙值和激子束縛能值。其室溫直接能隙值,分別為2.1電子伏特和1.72電子伏特;其室溫激子束縛能值,分別為0.32電子伏特和0.24電子伏特。在變溫的吸收能譜中發現,單層二硫化鎢和二硒化鎢薄膜的直接能隙值會產生紅移現象,此現象是由單層二硫化鎢和二硒化鎢薄膜的晶格受到熱膨脹和電子及聲子間的交互作用所造成。

We report the dysprosium (Dy) and gadolinium (Gd) doping effects on optical properties of ZnO thin films and the results of Raman scattering and spectroscopic ellipsometric measurements of monolayer transition metal dichalcogenides thin film (WS2 and WSe2). The Dy doped ZnO thin films with doping concentration of 1%, 3%, 5%, and 10% were fabricated on (0001) sapphire substrates by means of the pulsed laser deposition (PLD). The ZnO thin films with doping Gd concentration ranging from 3% to 30% were deposited on (0001) sapphire substrates by PLD. Monolayer WS2 and WSe2 thin films were deposited onto sapphire substrates by chemical vapor deposition (CVD). Our purpose is to investigate the changes of lattice dynamics and electronics structures of these materials.
Raman scattering spectrum of pure ZnO thin film shows both E2(low) and E2(high) phonon modes at approximately 99 and 438 cm-1. With an increase in Dy and Gd doping, the intensity of both E2(low) and E2(high) phonon modes is decreased. Optical transmission spectra show increase in both transmittance in ultraviolet region with increasing Dy and Gd doping. The Dy and Gd doping effects on optical band gap of ZnO thin films can be explained by both energy band gap narrowing and Burstein-Moss shifted.
Raman scattering spectra of monolayer WS2 and WSe2 thin films excited by 532-nm laser line show full phonon modes. The room-temperature absorption spectra of monolayer WS2 and WSe2 thin films exhibit emerging A and B excitons. Additionally, monolayer WS2 and WSe2 thin films show room temperature direct band gap at approximately 2.1 and 1.72 eV. The exciton binding energy of monolayer WS2 and WSe2 thin films is found to be approximately 0.32 and 0.24 eV at 300 K. With increasing temperature, the direct band gap of monolayer WS2 and WSe2 thin films shows a redshift, which can be elucidated by thermal expansion and electron-phonon interaction.

Acknowledgements i 摘要 ii Abstract iv Contents vi List of Figures viii List of Tables xxiii Chapter 1 Introduction 1 Chapter 2 Brief survey of (Dy, Gd) doped ZnO and transition metal dichalcogenides 7 2-1 (Dy, Gd) doped ZnO 7 2-1-1 Physical properties 8 2-1-2 Optical properties 15 2-2 Transition metal dichalcogenides 20 2-2-1 Physical properties 20 2-2-2 Optical properties 22 Chapter 3 Experimental techniques 51 3-1 Raman scattering spectroscopy 51 3-2 Grating spectrometer 60 3-3 Spectroscopic ellipsometry 65 Chapter 4 Sample preparation and properties 74 4-1 Sample preparation 74 4-2 Sample properties 77 Chapter 5 Optical properties of (Dy, Gd) doped ZnO thin films 96 5-1 Raman scattering spectra 97 5-2 Optical transmission spectra 100 5-3 Spectroscopic ellipsometric spectra 103 5-4 Summary 113 Chapter 6 Optical properties of monolayer WS2 and WSe2 thin films 156 6-1 Raman scattering spectra 157 6-2 Spectroscopic ellipsometric spectra 162 6-3 Summary 170 Chapter 7 Thesis summary 190 References 193

[1]M. Opel, S. T. B. Goennenwein, M. Althammer, K. W. Nielsen, E. M. Karrer-Muller, S. Bauer, K. Senn, C. Schwark, C. Weier, G. Guntherodt, B. Beschoten, and R. Gross, “Zinc oxide - from dilute magnetic doping to spin transport”, Phys. Status Solidi B 251, 1700 (2014).
[2]Z. Dai, A. Nurbawono, A. Zhang, M. Zhou, Y. P. Feng, G. W. Ho, and C. Zhang, “C-doped ZnO nanowires: electronic structures, magnetic properties, and a possible spintronic device”, J. Chem. Phys. 134, 104706 (2011).
[3]E. V. Gomonay and V. M. Loktev, “Spintronics of antiferromagnetic systems”, Low Temp. Phys. 40, 17 (2014).
[4]I. Zutic, J. Fabian, and S. D. Sarma, “Spintronics: fundamentals and applications”, Rev. Mod. Phys. 76, 323 (2004).
[5]M. Johnson, “Spintronics”, J. Phys. Chem. B 109, 14278 (2005).
[6]S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics”, Mater. Sci. Engin. R 40, 137 (2003).
[7]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors”, Science 287, 1019 (2000).
[8]J. H. Shim, T. Hwang, S. Lee, J. H. Park, S. J. Han, and Y. H. Jeong, “Origin of ferromagnetism in Fe- and Cu-codoped ZnO”, Appl. Phys. Lett. 86, 082503 (2005).
[9]P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO”, Nature Mater. 2, 673 (2003).
[10]F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films”, Mater. Sci. Engin. R 62, 1 (2008).
[11]K. Sato and H. Katayama-Yoshida, “Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide”, Physica B 308, 904 (2001).
[12]R. Y. Sato-Berru, A. Vazquez-Olmos, A. L. Fernandez-Osorio, and S. Sotres-Martinez, “Micro-Raman investigation of transition-metal-doped ZnO nanoparticles”, J. Raman Spectrosc. 38, 1073 (2007).
[13]K. C. Barick, S. Singh, M. Aslam, and D. Bahadur, “Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters”, Micro. Meso. Mater. 134, 195 (2010).
[14]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98, 041301 (2005).
[15]S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, and M. V. Swain, “Mechanical deformation of single-crystal ZnO”, Appl. Phys. Lett. 80, 956 (2002).
[16]U. Ozgur, X. Gu, S. Chevtchenko, J. Spradlin, S. J. Cho, H. Morkoc, F. H. Pollak, H. O. Everitt, B. Nemeth, and J. E. Nause, “Thermal conductivity of bulk ZnO after different thermal treatments”, J. Electro. Mater. 35, 550 (2006).
[17]J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, “High field electron transport properties of bulk ZnO”, J. Appl. Phys. 86, 6864 (1999).
[18]A. G. E. Hachimi, H. Zaari, A. Benyoussef, M. E. Yadari, and A. E. Kenz, “First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide”, J. Rare Earth 32, 715 (2014).
[19]L. Liu, P. Y. Yu, Z. Ma, and S. S. Mao, “Ferromagnetism in GaN:Gd: a density functional theory study”, Phys. Rev. Lett. 100, 127203 (2008).
[20]R. S. Ajimsha, A. K. Das, B. N. Singh, P. Misra, and L. M. Kukreja, “Structural, electrical and optical properties of Dy doped ZnO thin films grown by buffer assisted pulsed laser deposition”, Physica E 42, 1838 (2010).
[21]X. Ma and Z. Wang, “The optical properties of rare earth Gd doped ZnO nanocrystals”, Mater. Sci. Semicond. Process. 15, 227 (2012).
[22]A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2”, Nano Lett. 10, 1271 (2010).
[23]D. Braga, I. G. Lezama, H. Berger, and A. F. Morpurgo, “Quantitative determination of the band gap of WS2 with ambipolar lonic liguid-gated transistors”, Nano Lett. 12, 5218 (2012).
[24]K. Kosmider, J. W. Gonzalez, and J. Fernandez-Rossier, “Large spin splitting in the conduction band of transition metal dichalcogenide monolayers”, Phys. Rev. B 88, 245436 (2013).
[25]A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Mater. 6, 183 (2007).
[26]J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. R. Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers”, Nano Lett. 12, 844 (2012).
[27]R. Roldan, M. P. Lopez-Sancho, F. Guinea, E. Cappelluti, J. A. Silva-Guillen, and P. Ordejon, “Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides”, 2D Materials 1, 034003 (2014).
[28]M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport”, ACS Nano 8, 7130 (2014).
[29]F. Zhang, R. J. Zhang, D. X. Zhang, Z. Y. Wang, J. P. Xu, Y. X. Zheng, L. Y. Chen, R. Z. Huang, Y. Sun, X. Chen, X. J. Meng, and N. Dai, “Temperature-dependent optical properties of titanium oxide thin films studied by spectroscopic ellipsometry”, Appl. Phys. Express 6, 121101 (2013).
[30]M. Osada and T. Sasaki, “Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks”, Adv. Mater. 24, 210 (2012).
[31]G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. V. D. Brink, “Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations”, Phys. Rev. B 76, 073103 (2007).
[32]J. Xue, J. S. Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. J. Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride”, Nature Mater. 10, 282 (2011).
[33]R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. H. Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy”, ACS Nano 8, 986 (2014).
[34]D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2”, ACS Nano 8, 8174 (2014).
[35]Z. Wang, Q. Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, “Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries”, Mater. Chem. Phys. 147, 1068 (2014).
[36]D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution”, Nature Mater. 12, 850 (2013).
[37]S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman, and J. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating”, Nano Lett. 13, 2831 (2013).
[38]J. Zaumseil, “Electronic control of circularly polarized light emission”, Science 344, 702 (2014).
[39]S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors”, Nano Lett. 14, 2019 (2014).
[40]R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, “Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes”, Nano Lett. 14, 5590 (2014).
[41]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature Nanotech. 7, 699 (2012).
[42]K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Phys. Rev. Lett. 105, 136805 (2010).
[43]S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, “Strain-induced indirect to direct bandgap transition in multilayer WSe2”, Nano Lett. 14, 4592 (2014).
[44]A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers”, ACS Nano 7, 5235 (2013).
[45]P. Johari and V. B. Shenoy, “Tunable dielectric properties of transition metal dichalcogenides”, ACS Nano 5, 5903 (2011).
[46]A. Kumar and P. K. Ahluwalia, “Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te): effect of quantum confinement”, Physica B 407, 4627 (2012).
[47]J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor”, Nat. Commun. 4, 1474 (2013).
[48]K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2”, Nature Mater. 12, 207 (2013).
[49]A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2”, Nature Nanotech. 8, 634 (2013).
[50]Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys”, ACS Nano 7, 4610 (2013).
[51]H. P. Komsa and A. V. Krasheninnikov, “Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles”, Phys. Rev. B 88, 085318 (2013).
[52]A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. V. Pashkova, S. J. Pearton, K. Ip, R. M. Frazier, C. R. Abernathy, D. P. Norton, J. M. Zavada, and R. G. Wilson, “Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe”, Mater. Sci. Semicond. Process. 7, 77 (2004).
[53]K. Rode, A. Anane, R. Mattana, J. P. Contour, O. Durand, and R. LeBourgeois, “Magnetic semiconductors based on cobalt substituted ZnO”, J. Appl. Phys. 93, 7676 (2003).
[54]D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-riba, and T. Venkatesan, “On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system”, Nature Mater. 3, 709 (2004).
[55]S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, “Colossal magnetic moment of Gd in GaN”, Phys. Rev. Lett. 94, 037205 (2005).
[56]G. S. Wu, Y. L. Zhuang, Z. Q. Lin, X. Y. Yuan, T. Xie, and L. D. Zhang, “Synthesis and photoluminescence of Dy-doped ZnO nanowires”, Physica E 31, 5 (2006).
[57]O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, “Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties”, J. Alloys Compd. 576, 72 (2013).
[58]X. Ma, “The magnetic properties of Gd doped ZnO nanowires”, Thin Solid Films 520, 5752 (2012).
[59]V. Ney, S. Ye, T. Kammermeier, K. Ollefs, F. Wilhelm, A. Rogalev, S. Lebegue, A. L. D. Rosa, and A. Ney, “Structural and magnetic analysis of epitaxial films of Gd-doped ZnO”, Phys. Rev. B 85, 235203 (2012).
[60]S. Kumar and P. D. Sahare, “Gd3+ incorporated ZnO nanoparticles: a versatile material”, Mater. Research Bulletin 51, 217 (2014).
[61]J. G. Song, J. Park, W. Lee, T. Choi, H. Jung, C. W. Lee, S. H. Hwang, J. M. Myoung, J. H. Jung, S. H. Kim, C. Lansalot-Matras, and H. Kim, “Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition”, ACS Nano 7, 11333 (2013).
[62]Y. H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C. T. Lin, J. K. Huang, M. T. Chang, C. S. Chang, M. Dresselhaus, T. Palacios, L. J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces”, Nano Lett. 13, 1852 (2013).
[63]L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films”, Science 340, 1311 (2013).
[64]H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers”, Nano Lett. 13, 3447 (2013).
[65]Thripuranthaka M. and D. J. Late, “Temperature dependent phonon shifts in single-layer WS2”, ACS Appl. Mater. Interfaces 6, 1158 (2014).
[66]E. D. Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. A. Nguyen, T. E. Mallouk, M. Terrones, and M. A. Pimenta, “Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman Spectroscopy”, ACS Nano 8, 9629 (2014).
[67]W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)”, Phys. Rev. B 85, 033305 (2012).
[68]S. Kumar and U. Schwingenschlogl, “Thermoelectric response of bulk and monolayer MoSe2 and WSe2”, Chem. Mater. 27, 1278 (2015).
[69]H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides”, Sci. Rep. 3, 1608 (2013).
[70]J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy (Elsevier, 2003).
[71]D. A. Long, Raman spectroscopy (McGraw-Hill, 1977).
[72]H. Fujiwara, Spectroscopic ellipsometry principles and applications (John Wiley & Sons, Ltd, 2003).
[73]H. G. Tompkins, and E. A. Irene, Handbook of ellipsometry (Springer, 2005).
[74]Y. H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C. T. Lin, J. K. Huang, M. T. Chang, C. S. Chang, M. Dresselhasus, T. Palacios, L. J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces”, Nano Lett. 13, 1852 (2013).
[75]J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications”, ACS Nano 8, 923 (2014).
[76]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO”, Phys. Rev. B 70, 195207 (2004).
[77]E. Bacaksiz, M. Parlak, M. Tomakin, A. Ozcelik, M. Karakiz, and M. Altunbas, “The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films”, J. Alloys Compd. 466, 447 (2008).
[78]S. L. Gupta and R. K. Thareja, “ZnO thin film deposition using colliding plasma plumes and single plasma plume: structural and optical properties”, J. Appl. Phys. 114, 224903 (2013).
[79]D. N. Montenegro, V. Hortelano, O. Martinez, M. C. Martinez-Tomas, V. Sallet, V. Munoz-Sanjose, and J. Jimenez, “Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition”, J. Phys. D: Appl. Phys. 46, 235302 (2013).
[80]M. Ungureanu, H. Schmidt, H. V. Wenckstern, H. Hochmuth, M. Lorenz, M. Grundmann, M. Fecioru-Morariu, and G. Guntherodt, “A comparison between ZnO films doped with 3d and 4f magnetic ions”, Thin Solid Films 515, 8761 (2007).
[81]V. Ney, S. Ye, T. Kammermeier, A. Ney, H. Zhou, J. Fallert, H. Kalt, F. Y. Lo, A. Melnikov, and A. D. Wieck, “Structural, magnetic, and optical properties of Co- and Gd-implanted ZnO(0001) substrates”, J. Appl. Phys. 104, 083904 (2008).
[82]I. Bantounas, V. Singaravelu, I. S. Roqan, and U. Schwingenschlogl, “Structural and magnetic properties of Gd-doped ZnO”, J. Mater. Chem. C 2, 10331 (2014).
[83]P. Pascuta and E. Culea, “Structural and thermal properties of some zinc borate glasses containing gadolinium ions”, J. Mater. Sci: Mater. Electron 22, 1060 (2011).
[84]A. A. Dakhel and M. El-Hilo, “Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation”, J. Appl. Phys. 107, 123905 (2010).
[85]M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K. H. Chae, R. Jayavel, and T. Jimbo, “Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method”, J. Appl. Phys. 108, 053904 (2010).
[86]S. A. Aravindh, U. Schwingenschloegl, and I. S. Roqan, “Ferromagnetism in Gd doped ZnO nanowires: a first principles study”, J. Appl. Phys. 116, 233906 (2014).
[87]M. Ungureanu, H. Schmidt, Q. Xu, H. V. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, and M. Grundmann, “Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd)”, Superlattices Microstruct. 42, 231 (2007).
[88]Y. S. Liu, Y. S. Lin, Y. S. Wei, C. Y. Wei, P. M. Lee, and C. Y. Liu, “Optical and electrical characterization of transparent conductive Gd-doped AZO thin films”, Phys. Status Solidi A 210, 600 (2013).
[89]C. Lan, B. Lin, Y. Jiang, and C. Li, “Optical properties of (100) oriented ZnO:Gd films deposited by reactive radio frequency magnetron sputtering”, Mater. Lett. 132, 116 (2014).
[90]A. Souissi, A. Marzouki, A. Sayari, V. Sallet, A. Lusson, and M. Oueslati, “Origin of the Raman mode at 379 cm-1 observed in ZnO thin films grown on sapphire”, J. Raman Spectrosc. 42, 1574 (2011).
[91]Y. J. Lin, C. L. Tsai, Y. M. Lu, and C. J. Liu, “Optical and electrical properties of undoped ZnO films”, J. Appl. Phys. 99, 093501 (2006).
[92]K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry”, Appl. Surf. Sci. 175, 543 (2001).
[93]C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals”, Phys. Rev. 181, 1351 (1969).
[94]J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO”, Phys. Rev. B 16, 3753 (1977).
[95]R. Cusco, E. A. Llado, J. Ibanez, and L. Artus, “Temperature dependence of Raman scattering in ZnO”, Phys. Rev. B 75, 165202 (2007).
[96]S. Singh and M. S. R. Rao, “Optical and electrical resistivity studies of isovalent and aliovalent 3d transition metal ion doped ZnO”, Phys. Rev. B 80, 045210 (2009).
[97]R. T. Demers, S. Kong, M. V. Klein, R. Du, and C. P. Flynn, “Raman scattering from vibrational and magnetic modes in Dy, Er, and Y films”, Phys. Rev. B 38, 11523 (1988).
[98]J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, “Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films”, Appl. Phys. Lett. 88, 101905 (2006).
[99]A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, and S. Amara, “Effect of substrates on the properties of ZnO thin films grown by pulsed laser deposition”, Adv. Mater. Phys. Chem. 3, 209 (2013).
[100]S. Cho, “Effect of growth temperature on structural, electrical, and optical properties of Gd-doped zinc oxide films”, Phys. Status Solidi A 211, 709 (2014).
[101]A. A. Toropov, O. V. Nekrutkina, T. V. Shubina, T. Gruber, C. Kirchner, A. Waag, K. F. Karlsson, P. O. Holtz, and B. Monemar, “Temperature-dependent exciton polariton photoluminescence in ZnO films”, Phys. Rev. B 69, 165205 (2004).
[102]F. Lo, J. Guo, C. Huang, K. Chou, H. Liu, V. Ney, A. Ney, M. Chern, S. Shvarkov, D. Reuter, A. D. Wieck, S. Pezzagna, and J. Massies, “Evidences of defect contribution in magnetically ordered Sm-implanted GaN”, Curr. Appl. Phys. 14, S7 (2014).
[103]Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry”, Appl. Surf. Sci. 254, 2922 (2008).
[104]H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, and X.Z. Zhao, “Properties of Dy-doped ZnO nanocrystalline thin films prepared by pulsed laser deposition”, Appl. Surf. Sci. 254, 2013 (2008).
[105]B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, “Band-gap tailoring of ZnO by means of heavy Al doping”, Phys. Rev. B 37, 10244 (1988).
[106]K. Postave, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate”, J. Appl. Phys. 87, 7820 (2000).
[107]I. Volintiru, M. Creatore, and M. C. M. van de Sanden, “In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition”, J. Appl. Phys. 103, 033704 (2008).
[108]R. A. Synowichi, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants”, Thin Solid Films 313, 394 (1998).
[109]Y. C. Liu, S. K. Tung, and J. H. Hsieh, “Influence of annealing on optical properties and surface structure of ZnO thin films”, J. Cryst. Growth 287, 105 (2006).
[110]H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption”, Phys. Rev. B 71, 075109 (2005).
[111]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition”, J. Appl. Phys 85, 7884 (1999).
[112]R. C. Rai, M. Guminiak, S. Wilser, B. Cai, and M. L. Nakarmi, “Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition”, J. Appl. Phys. 111, 073511 (2012).
[113]F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition”, J. Appl. Phys. 117, 213911 (2015).
[114]F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging”, J. Appl. Phys. 95, 4772 (2004).
[115]O. Oprea, O. R. Vasile, G. Voicu, L. Craciun, E. Andronescu, “Photoluminescence, magnetic properties and photocatalytic activity of Gd3+ doped ZnO nanoparticles”, Dig. J. Nanomater. Bios. 7, 1757 (2012).
[116]H. Yoshikawa and S. Adachi, “Optical constants of ZnO”, Jpn. J. Appl. Phys. 36, 6237 (1997).
[117]W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO”, Appl. Phys. Lett. 86, 191911 (2005).
[118]S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, and W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films”, J. Cryst. Growth 287, 78 (2006).
[119]J. Krustok, H. Collan, and K. Hjelt, “Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy?”, J. Appl. Phys. 81, 1442 (1997).
[120]H. Y. Fan, “Temperature dependence of the energy gap in semiconductors”, Phys. Rev. 82, 900 (1951).
[121]J. Yang, Y. Q. Gao, J. Wu, Z. M. Huang, X. J. Meng, M. R. Shen, J. L. Sun, and J. H. Chu, “Temperature dependent optical properties of Mn doped (Pb, Sr) TiO3 ferroelectric films in absorption region: electron-phonon interaction”, J. Appl. Phys. 108, 114102 (2010).
[122]R. Passler, “Dispersion-related assessment of temperature dependences for the fundmental band gap of hexagonal GaN”, J. Appl. Phys. 90, 3956 (2001).
[123]P. K. Sarswat and M. L. Free, “A study of energy band gap versus temperature for Cu2ZnSnS4 thin films”, Physica B 407, 108 (2012).
[124]S. Logothetideis, J. Petalas, M. Cardona, and T. D. Moustakas, “Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN”, Phys. Rev. B 50, 18017 (1994).
[125]T. Skettrup, “Urbach's rule derived from thermal fluctuations in the band-gap energy”, Phys. Rev. B 18, 2622 (1978).
[126]C. Ballif, M. Regula, and F. Levy, “Optical and electrical properties of semiconducting WS2 thin films: from macroscopic to local probe measurements”, Sol. Energy Mater. Sol. Cells 57, 189 (1999).
[127]H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, “Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2”, Phys. Rev. B 87, 155304 (2013).
[128]Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorption microscopy of monolayer and bulk WSe2”, ACS Nano 8, 2970 (2014).
[129]N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: monolayer WSe2 triangles”, ACS Nano 7, 10985 (2013).
[130]P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. D. Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2”, Opt. Express 21, 4908 (2013).
[131]S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry”, APL Mater. 2, 092508 (2014).
[132]C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry”, Appl. Phys. Lett. 104, 103114 (2014).
[133]A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2”, Phys. Rev. B 84, 155413 (2011).
[134]H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2”, Phys. Rev. B 87, 165409 (2013).
[135]W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2”, Nanoscale 5, 9677 (2013).
[136]Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, and Q. Xiong, “Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2”, Nano Lett. 13, 1007 (2013).
[137]T. J. Wieting and J. L. Verble, “Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2”, Phys. Rev. B 3, 4286 (1971).
[138]G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, “Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides”, Phys. Rev. B 7, 3859 (1973).
[139]J. L. Verble and T. J. Wieting, “Lattice mode degeneracy in MoS2 and other layer compounds”, Phys. Rev. Lett. 25, 362 (1970).
[140]A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. P. Lopez, A. L. Elias, C. I. Chia, B. Wang, V. H. Crespi, F. L. Urias, J. C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy”, Sci. Rep. 3, 1755 (2013).
[141]C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition”, Adv. Optical Mater. 2, 131 (2014).
[142]Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary”, ACS Nano 7, 8963 (2013).
[143]D. J. Late, S. N. Shirodkar, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Thermal expansion, anharmonicity and temperature-dependent Raman Spectra of single- and few-layer MoSe2 and WSe2”, Chem. Phys. Chem. 15, 1592 (2014).
[144]H. Terrones, E. D. Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elias, T. E. Mallouk, L. Balicas, M. A. Pimenta, and M. Terrones, “New first order Raman-active modes in few layered transition metal dichalcogenides”, Sci. Rep. 4, 4215 (2014).
[145]G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, “Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W)”, Phys. Rev. B 57, 6666 (1998).
[146]W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2”, ACS Nano 7, 791 (2013).
[147]B. Zhu, X. Chen, and X. Cui, “Exciton binding energy of monolayer WS2”, Sci. Rep. 5, 9218 (2015).
[148]K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets : synthesis and layer-dependent photoluminescence property”, Nanotechnology 24, 465705 (2013).
[149]C. C. Shen, Y. T. Hsu, L. J. Li, and H. L. Liu, “Charge dynamics and electronic structures of monolayer MoS2 films grown by chemical vapor deposition”, Appl. Phys. Express 6, 125801 (2013).
[150]A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides”, Phys. Rev. B 86, 115409 (2012).
[151]G. Liu, W. Shan, Y. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides”, Phys. Rev. B 88, 085433 (2013).
[152]C. Chang, X. Fan, S. Lin, and J. Kuo, “Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain”, Phys. Rev. B 88, 195420 (2013).
[153]Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide”, Nature 513, 214 (2014).
[154]S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons”, Sci. Rep. 3, 2657 (2013).
[155]C. F. Klingshirn, Semiconductor optics (Springer, 2012).
[156]X. L. Yang, S. H. Gue, F. T. Chan, K. W. Wong, and W. Y. Ching, “Analytic solution of a two-dimensional hydrogen atom. I. nonrelativistic theory”, Phys. Rev. A 43, 1186 (1991).
[157]A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2”, Phys. Rev. Lett. 113, 076802 (2014).
[158]C. J. Docherty, P. Parkinson, H. J. Joyce, M. Chiu, C. Chen, M. Lee, L. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition”, ACS Nano 8, 11147 (2014).
[159]D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical spectrum of MoS2: many-body effects and diversity of exciton states”, Phys. Rev. Lett. 111, 216805 (2013).
[160]R. Passler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors”, Phys. Stat. Sol. 236, 710 (2003).
[161]S. A. Lourenco, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Pocas, D. O. T. Filho, and J. R. Leite, “Thermal expansion contribution to the temperature dependence of excitonic transitions in GaAs and AlGaAs”, Braz. J. Phys. 34, 517 (2004).
[162]Z. Hang, D. Yan, F. H. Pollak, G. D. Pettit, and J. M. Woodall, “Temperature dependence of the direct band gap of InxGa1-xAs (x = 0.06 and 0.15)”, Phys. Rev. B 44, 10546 (1991).
[163]S. Shionoya and W. M. Yen, Phosphor handbook (CRC Pr I Llc, 1998).
[164]A. R. Beal and W. Y. Liang, “Excitons in 2H-WSe2 and 3R-WS2”, J. Phys. C: Solid State Phys. 9, 2459 (1976).
[165]P. C. Yen, Y. S. Huang, and K. K. Tiong, “The growth and characterization of rhenium-doped WS2 single crystals”, J. Phys.: Condens. Matter 16, 2171 (2004).

下載圖示
QR CODE