Basic Search / Detailed Display

Author: 黃湘庭
Huang, Hsiang-Ting
Thesis Title: Alghalith 美式選擇權定價公式評估
An Evaluation of Alghalith's American Option Pricing Formula
Advisor: 王弘倫
Wang, Hung-Lung
呂育道
Lyuu, Yuh-Dauh
Committee: 王弘倫
Wang, Hung-Lung
呂育道
Lyuu, Yuh-Dauh
陸裕豪
Lok, U-Hou
Approval Date: 2024/07/26
Degree: 碩士
Master
Department: 資訊工程學系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2024
Academic Year: 112
Language: 中文
Number of pages: 45
Keywords (in Chinese): 選擇權美式選擇權選擇權定價
Keywords (in English): Option, American Option, Option Pricing
Research Methods: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401583
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 97Downloads: 8
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 選擇權定價利用數學模型來評估在未來某個時間點或期間內買賣標的資產的權利的合理市場價值。Black-Scholes模型為歐式選擇權提供了一個簡單、計算高效的封閉解公式。對較為複雜的美式選擇權,在2020年Alghalith為美式選擇權導出了一個簡單的公式解。本文將分析、檢驗該公式解於理論上的定價效果,並加以微幅修正。

    Option pricing uses mathematical models to assess the fair market value of the right to buy or sell the underlying asset at a certain time or period in the future. The Black-Scholes model provides simple and computationally efficient closed-form formulas for European options. For more complex American options, Alghalith (2020) derives a simple closed-form formula for puts. This thesis analyzes the pricing accuracy of this formula and that of a revised version.

    致謝 i 摘要 ii Abstract iii 目次 iv 附圖目次 v 第一章 緒論 1 1.1 背景知識 1 1.2 研究動機 2 1.3 論文架構 3 第二章 理論背景 4 2.1 Black-Scholes 模型 4 2.2 二元樹與三元樹 6 2.3 Alghalith美式賣權定價公式 10 第三章 實驗數據與討論 14 3.1 賣權理論價格與履約價的關係 15 3.3 賣權價格與無風險利率的關係 28 3.4 賣權理論價格與波動率的關係 37 第四章 結論 42 參考文獻 43

    Alghalith, M. (2020). Pricing the American options: A closed-form, simple formula. Physica A: Statistical Mechanics and Its Applications, 548, 123873.
    Alghalith, M. (2018). Pricing the American options using the Black–Scholes pricing formula. Physica A: Statistical Mechanics and Its Applications, 507, 443–445.
    Lyuu, Y. D. (2002). Financial engineering and computation: Principles, mathematics, algorithms. Cambridge: Cambridge University Press, 2002.
    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
    Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.
    Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323–338.
    Rogers, L. C. (2002). Monte Carlo valuation of American options. Mathematical Finance, 12(3), 271–286.
    Bouchard, B., Chau, K. W., Manai, A., & Sid-Ali, A. (2019). Monte-Carlo methods for the pricing of American options: A semilinear BSDE point of view. ESAIM: Proceedings and Surveys, 65, 294–308.
    Schwartz, E. S. (1977). The valuation of warrants: Implementing a new approach. Journal of Financial Economics, 4(1), 79–93.
    Cen, Z., & Chen, W. (2019). A HODIE finite difference scheme for pricing American options. Advances in Difference Equations, 2019, Article 67. https://doi.org/10.1186/s13662-018-1917-z
    Boyle, P. P. (1986). Option valuation using a tree-jump process. International Options Journal, 3, 7–12.
    Ahn, J., & Song, M. (2007). Convergence of the trinomial tree method for pricing European/American options. Applied Mathematics and Computation, 189(1), 575–582.
    Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models. New York: Springer.
    Ju, N., & Zhong, R. (1999). An approximate formula for pricing American options. Journal of Derivatives, 7(2), 31–40.
    Li, C., & Ye, Y. (2019). Pricing and exercising American options: An asymptotic expansion approach. Journal of Economic Dynamics and Control, 107, 103729.
    Chiu, C. Y., & Chen, Y. T., Dai, T. S., Lyuu, Y. D., Liu, L. C. (2022). Option pricing with the control variate technique beyond Monte Carlo simulation. North American Journal of Economics and Finance, 62, 101772.
    Cvitanic, J., & Zapatero, F. (2004). Introduction to the economics and mathematics of financial markets. Cambridge, MA: MIT Press.
    Barraclough, K., & Whaley, R. E. (2012). Early exercise of put options on stocks. Journal of Finance, 67(4), 1423–1456.
    Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144.
    Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1)141-183.
    Hull, J. C. (2021). Options, futures, and other derivatives. 11e. Hoboken: Pearson.
    Omberg, E. (1988). Efficient discrete time jump process models in option pricing. Journal of Financial and Quantitative Analysis, 23(2), 161–174.
    Kwok, Y.-K. (1998). Mathematical models of financial derivatives. Singapore: Springer-Verlag.

    下載圖示
    QR CODE