研究生: |
黃湘庭 Huang, Hsiang-Ting |
---|---|
論文名稱: |
Alghalith 美式選擇權定價公式評估 An Evaluation of Alghalith's American Option Pricing Formula |
指導教授: |
王弘倫
Wang, Hung-Lung 呂育道 Lyuu, Yuh-Dauh |
口試委員: |
王弘倫
Wang, Hung-Lung 呂育道 Lyuu, Yuh-Dauh 陸裕豪 Lok, U-Hou |
口試日期: | 2024/07/26 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 選擇權 、美式選擇權 、選擇權定價 |
英文關鍵詞: | Option, American Option, Option Pricing |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401583 |
論文種類: | 學術論文 |
相關次數: | 點閱:75 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選擇權定價利用數學模型來評估在未來某個時間點或期間內買賣標的資產的權利的合理市場價值。Black-Scholes模型為歐式選擇權提供了一個簡單、計算高效的封閉解公式。對較為複雜的美式選擇權,在2020年Alghalith為美式選擇權導出了一個簡單的公式解。本文將分析、檢驗該公式解於理論上的定價效果,並加以微幅修正。
Option pricing uses mathematical models to assess the fair market value of the right to buy or sell the underlying asset at a certain time or period in the future. The Black-Scholes model provides simple and computationally efficient closed-form formulas for European options. For more complex American options, Alghalith (2020) derives a simple closed-form formula for puts. This thesis analyzes the pricing accuracy of this formula and that of a revised version.
Alghalith, M. (2020). Pricing the American options: A closed-form, simple formula. Physica A: Statistical Mechanics and Its Applications, 548, 123873.
Alghalith, M. (2018). Pricing the American options using the Black–Scholes pricing formula. Physica A: Statistical Mechanics and Its Applications, 507, 443–445.
Lyuu, Y. D. (2002). Financial engineering and computation: Principles, mathematics, algorithms. Cambridge: Cambridge University Press, 2002.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.
Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323–338.
Rogers, L. C. (2002). Monte Carlo valuation of American options. Mathematical Finance, 12(3), 271–286.
Bouchard, B., Chau, K. W., Manai, A., & Sid-Ali, A. (2019). Monte-Carlo methods for the pricing of American options: A semilinear BSDE point of view. ESAIM: Proceedings and Surveys, 65, 294–308.
Schwartz, E. S. (1977). The valuation of warrants: Implementing a new approach. Journal of Financial Economics, 4(1), 79–93.
Cen, Z., & Chen, W. (2019). A HODIE finite difference scheme for pricing American options. Advances in Difference Equations, 2019, Article 67. https://doi.org/10.1186/s13662-018-1917-z
Boyle, P. P. (1986). Option valuation using a tree-jump process. International Options Journal, 3, 7–12.
Ahn, J., & Song, M. (2007). Convergence of the trinomial tree method for pricing European/American options. Applied Mathematics and Computation, 189(1), 575–582.
Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models. New York: Springer.
Ju, N., & Zhong, R. (1999). An approximate formula for pricing American options. Journal of Derivatives, 7(2), 31–40.
Li, C., & Ye, Y. (2019). Pricing and exercising American options: An asymptotic expansion approach. Journal of Economic Dynamics and Control, 107, 103729.
Chiu, C. Y., & Chen, Y. T., Dai, T. S., Lyuu, Y. D., Liu, L. C. (2022). Option pricing with the control variate technique beyond Monte Carlo simulation. North American Journal of Economics and Finance, 62, 101772.
Cvitanic, J., & Zapatero, F. (2004). Introduction to the economics and mathematics of financial markets. Cambridge, MA: MIT Press.
Barraclough, K., & Whaley, R. E. (2012). Early exercise of put options on stocks. Journal of Finance, 67(4), 1423–1456.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144.
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1)141-183.
Hull, J. C. (2021). Options, futures, and other derivatives. 11e. Hoboken: Pearson.
Omberg, E. (1988). Efficient discrete time jump process models in option pricing. Journal of Financial and Quantitative Analysis, 23(2), 161–174.
Kwok, Y.-K. (1998). Mathematical models of financial derivatives. Singapore: Springer-Verlag.