研究生: |
黃偉哲 HUANG, Wei-Zhe |
---|---|
論文名稱: |
使用離軸射頻磁控濺鍍技術在TiO2/SrO終端之鈦酸鍶基板上生長釔鋇銅氧薄膜的超導特性之研究 Superconducting properties of YBa2Cu3Oy thin films grown on TiO2/SrO -terminated SrTiO3 substrates using an off-axis rf magnetron sputtering technique |
指導教授: |
廖書賢
Shu-Hsien Liao 王立民 Li-Min Wang |
口試委員: |
廖書賢
Shu-Hsien Liao 王立民 Li-Min Wang 尤孝雯 Hsiao-Wen Yu 陳昭翰 Jau-Han Chen |
口試日期: | 2024/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 高溫超導體 、熱處理基板 、磁控濺鍍 、釔鋇銅氧 |
英文關鍵詞: | High-Temperature Superconductors, Thermally Treated Substrate, Magnetron Sputtering, YBCO |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202401616 |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗先拋光確定鈦酸鍶(SrTiO3)(100)基板有良好的平整度,之後對基板進行熱處理,使鈦酸鍶基板有TiO2或SrO為終端的2種表面,然後用射頻磁控濺鍍系統(magnetron sputteirng),以Tg = 720 ℃、功率90 W與壓力400 mtorr的條件下成長高溫超導體釔鋇銅氧(YBCO)薄膜,最後進行量測。
經由4點量測比較3個樣品的臨界溫度(Tc),YBCO Tc = 85.4 K、TiO2-YBCO Tc = 86.8 K、SrO-YBCO Tc = 86.7 K,可以得知在經過熱處理後的基板成長YBCO薄膜會有更好的Tc。之後利用SQUID量測進行比較發現經過熱處理的樣品一樣擁有較高的超導轉變溫度,但在將磁化強度轉換成磁化率時發現在SrO-YBCO中發現有明顯之順磁性效應,此效應即為順磁性麥斯納效應。
之後我們針對YBCO、TiO2-YBCO和SrO-YBCO的磁性量測做比較,YBCO、TiO2-YBCO和SrO-YBCO的Hc1(0)分別6.82 Oe、10.03 Oe和10.41 Oe,Hc2(0)分別為4.59 T、5.31 T和5.11 T,之後再計算出YBCO、TiO2-YBCO和SrO-YBCO的相干長度(ξ)與倫敦穿透深度(λ),最後利用磁滯曲線計算出臨界電流密度(Jc),利用外加磁場(H)與臨界電流密度(Jc)擬和釘扎力(Fp)與外加磁場(H)關係圖。藉由擬合釘扎力的結果可以推斷YBCO多數在二維釘札附近,與SrO-YBCO差不多,但TiO2-YBCO多數值都在一、二維混合釘札。
In this experiment, the SrTiO3(100) substrates are first polished to ensure a smooth surface. Subsequently, the substrates undergo thermal treatment to produce two types of surface terminations: TiO2-terminated and SrO-terminated. The (YBCO) thin films are then grown on these substrates using a radio frequency magnetron sputtering system under the conditions of a substrate temperature of 720°C, a power of 90 W, and a pressure of 400 mtorr. Finally, measurements are performed on the prepared thin films.
Through four-point measurements, the critical temperatures (Tc) of three sam-ples were compared: YBCO with Tc = 85.4 K, TiO2-YBCO with Tc = 86.8 K, and SrO-YBCO with Tc = 86.7 K. These results indicate that YBCO thin films grown on thermally treated substrates exhibit improved Tc. Subsequent SQUID measurements confirmed that samples with thermally treated substrates maintained higher super-conducting transition temperatures. However, when the magnetization was converted to magnetic susceptibility, a noticeable paramagnetic effect was observed in the SrO-YBCO sample, identified as the paramagnetic Meissner effect.
Subsequently, we compared the magnetic measurements of YBCO, TiO2-YBCO, and SrO-YBCO. The lower critical fields, Hc1(0), for YBCO, TiO2-YBCO, and SrO-YBCO were determined to be 6.82 Oe, 10.03 Oe, and 10.41 Oe, respectively, while the upper critical fields, Hc2(0), were found to be 4.59 T, 5.31 T, and 5.11 T, respectively. We then calculated the coherence lengths (ξ) and London penetration depths (λ) for each sample. Additionally, the critical current densities (Jc) were de-rived from the magnetic hysteresis loops, and the pinning force (Fp) versus applied magnetic field (H) relationship was fitted using the Jc -H data. The fitting results suggest that the majority of pinning in YBCO is associated with two-dimensional pinning centers, similar to SrO-YBCO, whereas TiO2-YBCO shows a mixed pinning regime with contributions from both one-dimensional and two-dimensional pinning centers.
1. Van Delft, D., & Kes, P. Physics today, 63(9), 38-43.2010
2. Meissner, W.; Ochsenfeld, R. Naturwissenschaften. 21 (44): 787–788.1933.
3. Bardeen, J., Cooper, L. N., & Schrieffer, J. R. Physical review, 108(5),1175.1957.
4. Bednorz, J. George, and K. Alex Müller. "Possible high T c superconductivity in the Ba− La− Cu− O system." Zeitschrift für Physik B Condensed Matter 64.2 (1986): 189-193.
5. https://zh.wikipedia.org/zh-tw/%E8%B6%85%E5%B0%8E%E9%AB%94
6. C. E. Housecroft, A. G. Sharpe and C. E. Housecroft. Inorganic chemistry. Har-low ; Upper Saddle River, NJ: Pearson Prentice Hall. 2005..
7. https://www.ubusiness.com.tw/content/merit/faq.aspx?id=1302
8. Szot, K., et al. "Formation of micro-crystals on the (100) surface of SrTiO3 at el-evated temperatures." Surface science 460.1-3 (2000): 112-128.
9. Hikita, Tokihisa, et al. "Surface structure of SrTiO3 (001) with various surface treatments." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11.5 (1993): 2649-2654.
10. H. K. Onnes, Comm. Phys. Lab. Univ. Leiden. Suppl. 29 (1911)
11. W. Meissner, R. Ochsenfeld. Naturwiss, vol. 787, p. 21, (1933).
12. Poole, C.P., et al., 2 - Phenomenon of superconductivity, in Superconductivity
13. F. London and H. London. Proc. Roy Soc., A155, (1935)
14. https://cmms.triumf.ca/theses/Sonier/PhD/node7.html
15. C. J. Gorter and H. Casimir, Physica 1 (1-6), 306-320 (1934).
16. Poole, Charles P., Horacio A. Farach, and Richard J. Creswick.Superconductivity. Academic press, 2013
17. https://en.wikipedia.org/wiki/File:Magnetisation_and_superconductors.png
18. Poole, Charles P., et al. Superconductivity. Elsevier, 2014.
19. Bean, C. P. . Physical Review Letters. 8 (6): 250–253.1962.
20. https://sqdl.shanghaitech.edu.cn/_upload/article/files/cd/c2/504b63c549919730b7a33d49dcce/432abd90-b643-44c9-acce-7a785fc6bf94.pdf
21. Gellé, Florian, et al. "Guideline to atomically flat TiO2-terminated SrTiO3 (001) surfaces." Surface Science 677 (2018): 39-45.
22. Ohnishi, T., et al. "Preparation of thermally stable TiO2-terminated SrTiO3 (100) substrate surfaces." Applied physics letters 85.2 (2004): 272-274
23. Bachelet, R., et al. "Atomically flat SrO-terminated SrTiO3 (001) sub-strate." Applied Physics Letters 95.14 (2009).
24. https://zh.wikipedia.org/zh-tw/X%E5%B0%84%E7%BA%BF
25. https://zh.wikipedia.org/zh-tw/%E5%9B%9B%E7%AB%AF%E7%82%B9%E6%B5%8B%E9%87%8F%E6%8A%80%E6%9C%AF
26. Jha, Alok K., and Neeraj Khare. "Investigation of flux pinning properties of YBCO: BaZrO3 composite superconductor from temperature dependent magneti-zation studies." Journal of magnetism and magnetic materials 322.18 (2010): 2653-2657.
27. Lattice parameters, cell volume and oxygen content of YBCO... | Download Table (researchgate.net)
28. A. Geim, S. Dubonos, J. Lok, M. Henini, and J. Maan, “Paramagnetic meissner effect in small superconductors,” Nature, vol. 396, no. 6707, pp. 144–146, 1998. (document), 2.4.3, 2.11
29. A. Geim, I. Grigorieva, S. Dubonos, J. Lok, J. Maan, A. Filippov, and F. Peeters, “Phase transitions in individual sub-micrometre superconductors,” Nature, vol. 390, no. 6657, pp. 259–262, 1997. 2.4.3
30. M. R. Koblischka, L. Puust, C.-S. Chang, T. Hauet, and A. Koblischka-Veneva, “The paramagnetic meissner effect (pme) in metallic superconductors,” Metals, vol. 13, no. 6, p. 1140, 2023. (document), 2.4.3, 4.2.1, 4.11
31. Yang, H. C., and L. M. Wang. "Characteristics of flux pinning in (formula pre-sented) superlattices." Physical Review B-Condensed Matter and Materials Phys-ics 59.13 (1999): 8956-8961.
32. Malik, Bilal A., Manzoor A. Malik, and K. Asokan. "Magneto transport study of YBCO: Ag composites." Current Applied Physics 16.10 (2016): 1270-1276.
33. Welp, U., et al. "Magnetic measurements of the upper critical field of YBa 2 Cu 3 O 7− δ single crystals." Physical review letters 62.16 (1989): 1908.
34. Jha, Alok K., Neeraj Khare, and R. Pinto. "Influence of interfacial LSMO nano-particles/layer on the vortex pinning properties of YBCO thin film." Journal of Superconductivity and Novel Magnetism 27 (2014): 1021-1026.
35. BRÜCK, S.; ALBRECHT, J. Physical Review B, , 71.17: 174508.2005
36. Dew-Hughes, D. "Flux pinning mechanisms in type II superconduc-tors." Philosophical Magazine 30.2 (1974): 293-305.
37. Moubah, R., et al. "Effect of interface bonding on the transport properties in CoFe 2/SrTiO 3/CoFe 2/NiFe magnetic tunnel junctions." Physical Review B—Condensed Matter and Materials Physics 82.2 (2010): 024415.
38. Singh, Akhilesh Kr, et al. "Field-induced resistance peak in a superconducting ni-obium thin film proximity coupled to a surface reconstructed SrTiO3." npj Quan-tum Materials 5.1 (2020): 45.
39. Smink, Sander, et al. "Engineering the stoichiometry of a TiO2-rich SrTiO3 (001) surface." Applied Physics Letters 120.16 (2022).