簡易檢索 / 詳目顯示

研究生: 林伯隆
Bo Long, Lin
論文名稱: 以色散補償技術增進光纖傳輸效能之研究
Improving the Performance of Optical Fiber Communication with Dispersion Compensation Technique
指導教授: 莊謙本
Chuang, Chien-Pen
賴柏洲
Lai, Po-Chou
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 61
中文關鍵詞: 高密度分波多工系統單模光纖色散補償光纖非零色散位移光纖反向色散光纖
英文關鍵詞: Dense wavelength division multiplexer, single mode fiber, dispersion compensation fiber, non-zero dispersion shift fiber, reverse dispersion fiber
論文種類: 學術論文
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在10Gbit/s、十六通道、通道間距為0.4nm的高密度分波多工系統中,利用各種色散補償光纖與不同的編碼方式來增進系統之效能。本論文對於兩個系統有詳細的描述,系統Ⅰ用來敘述色散光纖架構,系統Ⅱ用來敘述信號編碼架構。
    在系統Ⅰ中,分別以單模光纖搭配色散補償光纖、非零色散位移光纖搭配色散補償光纖、單模光纖搭配反向色散光纖、非零色散位移光纖搭配反向色散光纖之四種光纖補償架構,在10Gbit/s、十六通道、通道間距為0.4nm的高密度分波多工系統中,作為改善光纖傳輸效能。
    在系統Ⅱ中,根據系統Ⅰ之模擬結果,分別比較不歸零碼、歸零碼及曼徹斯特碼等三種編碼方式在系統效能上的差異。
    因此,此模擬結果能作為系統設計者,在未來發展的海底光纜或長距離的光纖通信架構中,做為設計時的參考依據。

    The major purpose of this thesis is to improve the efficiency of fiber transmission using different chromatic dispersion fibers and signal encoding in the 10 Gbit/s DWDM system which has sixteen channels and channel spacing is 0.4nm. This thesis has detailed description about two chromatic dispersion compensation systems, the systemⅠ explain about chromatic dispersion fiber architecture and the systemⅡ explain about signal encoding architecture.
    In the systemⅠ, the four kinds of compensable optical fiber architectures SMF+DCF, NZDSF+DCF, SMF+RDF, and NZDSF+RDF were used in 10 Gbit/s DWDM system which has sixteen channels and channel spacing is 0.4nm respectively.
    In the system Ⅱ, based on the simulation results of system Ⅰ to compare the system performance using NRZ, RZ, and Manchester encoding respectively.
    Therefore, the simulation results can help the designer for developing submarine optical fiber or long distance optical fiber communication system in the future.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1研究動機 1 1-2相關文獻回顧 2 1-3研究方法與目的 3 第二章 光纖基本結構、傳輸損耗及色散原理 5 2-1光纖基本結構 5 2-2光纖的種類 6 2-3光纖的導光原理 8 2-4光纖的傳輸損耗 13 2-4.1 光纖的損耗係數 13 2-4.2 光纖的損耗原因14 2-5色散的基本原理 17 2-5.1模間色散 17 2-5.2材料色散 18 2-5.3波導色散 20 第三章 光纖通訊中的設備與光纖特性 23 3-1掺鉺光纖放大器的基本結構 23 3-2掺鉺光纖放大器的工作原理 25 3-3掺鉺光纖放大器在光纖通信系統中的應用 26 3-4 光發射機 27 3-5 光接收機 31 3-6 光纖之基本特性 34 第四章 系統設計與描述 39 4-1 系統Ⅰ 各種色散補償光纖之比較 39 4-2 系統Ⅱ 編碼方式之比較 40 第五章 系統模擬結果與分析 43 5-1 系統Ⅰ 10Gbit/s色散補償架構模擬 43 5-1.1 架構一 單模光纖搭配色散補償光纖 43 5-1.2 架構二 單模光纖搭配反向色散光纖 44 5-1.3 架構三 非零色散位移光纖搭配色散補償光纖 46 5-1.4 架構四 非零色散位移光纖搭配反向色散光纖 47 5-2 系統一模擬結果 49 5-3 系統Ⅱ 不同信號編碼架構模擬 51 5-3.1 架構五 不歸零碼(NRZ)編碼 51 5-3.2 架構六 歸零碼(RZ)編碼 52 5-3.3 架構七 曼徹斯特(Manchester)編碼 54 5-4 系統Ⅱ模擬結果 55 第六章 結論 57 參考文獻 58 論文發表 61

    [1] B. Ivan, ”Transmission Limitations of WDM Transmission System with Dispersion Compensated Links in the Presence of Fiber Nomlinearities”, TELSINKS, pp. 496-499, 2001.

    [2] P. Paul and P. Sivanesan, “Dispersion Compensation Using Only Fiber Bragg Gratings”, IEEE Journal of selected topics in quantum electronics, VOL.5, No.5, pp. 1339-1344 , 1999.

    [3] K. P. Ho and S. K. Liaw,“ Demultiplexer Crosstalk Rejection Requirements for Hybrid DWDM System with Analog and Digital Channels”, IEEE Photon. Technol. Lett., 5, pp. 737-739, 1998.

    [4] C. H. Kim and Y. C. Chung,“ 2.5 Gb/s  16-channel Bidirectional WDM Transmission System Using Bidirectional Erbium-doped Fiber Amplifier Based on Spectrally Interleaved Synchronized Etalon Filters”, IEEE Photon Technol Lett. 11, pp. 745-747, 1999.

    [5] I. Suzukik, H. Masuda, S. Kawai, K. Aida, and J. Conradi, “Bidirectional 10-channel 2.5 Gbit/s WDM Transmission Over 250 km Using 76 nm (1531-1607 nm) Gain-band Bidirectional Erbium-doped Fiber Amplifiers”, Electron Lett., 33 , pp. 1967-1968, 1997.

    [6] J. S. Lee, M. K. Kim, and C. S. Park, ”Periodic Allocation of a set of Unequally Spaced Channels for WDM Systems Adopting Dispersion-shifted Fibers”, IEEE Photon. Technology Lett., Vol. 10, pp. 825-827, 1998.

    [7] H. H. Lu, ”Performance comparison between DCF and RDF dispersion compensation in fiber optical CATV systems “, IEEE Transactions On Broadcasting, Vol.48, Issue: 4 , pp. 370 -373, Dec., 2002.

    [8] K. Inoun, “Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region”, Journal of Lightwave Technology, Vol.10 No.11, pp. 1553-1561, 1992.

    [9] K. Mukasa and T. Yagi, ” Dispersion Flat and Low Non-linear Optical Link with New Type of Reverse Dispersion Fiber (RDF-60)”, Optical Fiber Communication Conference and Exhibit, Vol. 2, pp. 71-73 , 2001.

    [10] 賴柏洲編著, ”光纖通信與網路技術”, 全華科技圖書公司, 台北, 2003.

    [11] S. P. Survaiya and R. K. Shevgaonkar , “Dispersion Characteristics of an Optical Fiber having Linear Chirp Refractive Index Profile “, Journal of Lightwave Technology ,Vol.17, No.10 ,Oct., 1999.

    [12] A. H. Gnauck , J. M. Wiesenfeld , L. D. Garrett , M. Eiselt , F. Forghieri , L. Arcangeli , V. Gusmeroli , and D. Scarano , ” 16 x 20 Gb/s ,400-km WDM Transmission over NZDSF Using a Slope-compensating Fiber-grating Module”, IEEE Photonics Technology Letters , Vol. 12, No. 4, Apr., 2000.

    [13] R. W. Tkach, A. R. Chraplyvy, and F. Forghieri, “Four-Photon Mixing and High-Speed WDM Systems” Journal of Lightwave Technology, Vol.13, No. 5, May., 1995.

    [14] T. Tsuritani, K. Tanaka, N. Edagawa, and M.Suzuki, “Performance Comparison between SCDCF-based System and RDF-based System in Slope Compensating Transoceanic WDM Transmission”, Optical Fiber Communication Conference, Vol .4, pp. 47-49, 2000.

    [15] F. Forghieri, R. W. Thach, and A. R. Chraplyvy, “WDM Systems with Unequally Spaced Channels”, Journal of Lightwave Technology, Vol. 8, pp. 889-897, 1995.

    [16] F. Forghieri, P. R. Prucnal, R. W. Tkach, and A. R. Chraplyvy, “RZ Versus NRZ in Nonlinear WDM System”, IEEE Photonics Technology Letters, Vol. 9, No. 7, Jul., 1997.

    無法下載圖示 本全文未授權公開
    QR CODE