研究生: |
黃琬澐 Huang, Wan-Yun |
---|---|
論文名稱: |
一、硝基丙烯胺之連鎖動力學分割反應 二、丙二酸二乙酯衍生物與1,3-烯炔酯之有機連鎖反應製備硝酮衍生物 I. Organocatalytic Cascade Kinetic Resolution of Racemic Nitroallylic Amines II. Organocatalytic Cascade Synthesis of Functionalized Bicyclic Nitrones with 2-Aminomalonate Derivatives and 1,3-Enynoates |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 432 |
中文關鍵詞: | 立體化學 、有機催化 、動力學分割 、二氫口咢口井氮氧化物 、連鎖反應 、1,3-烯炔酯 、硝酮 |
英文關鍵詞: | stereochemistry, organocatalysis, kinetic resolution, oxazine N-oxide, cascade reaction, 1,3-enynoate, nitrone |
DOI URL: | http://doi.org/10.6345/NTNU201900609 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為三個篇章,第一章簡介立體化學發展,介紹對掌化合物之合成 途徑,主要區分為三大概念:(1)掌性起始物 (2)掌性輔助劑 (3)掌性催化劑 之合成策略,並引用文獻報導 闡述合成上的應用與價值。
第二章以動力學分割概念為主軸,將外消旋起始物經催化劑作用,形成兩鏡像異構物之過渡態能量差異 使 過渡態 能量低者轉換成產物;分割能量高者達到光學純化之目的。本章以外消旋MBH硝基烯丙基胺為目標,利用 Jørgenson-Hayashi催化劑 與醛類分子形成掌性烯胺中間體,進行不對稱加成反應。使用50 mol%催化劑時,催化劑被捕捉生成穩定的六員環二氫口咢口井氮氧化物中間體,進一步以4-硝基苯酚水解後,獲得連續三個立體中心之 (2R,3S,4R)-四氫吡啶產物(84-98% ee);並分割出高光學純度之(S)-硝基烯丙基胺起始物(56-96% ee)。降低催化劑量至20 mol%時,反應中同時存在動力學 (2R,3R,4R)-四氫吡啶與熱力學(2R,3S,4R)-四氫吡啶產物,藉由20 mol%三乙基胺幫助差相異構化反應進行,獲得最終高立體選擇性之熱力學(2R,3S,4R)-四氫吡啶產物(8:1-20:1 dr;70-84% ee)。另外,本實驗亦透過理論計算,說明水解過程為整體反應之速率決定步驟。
第三章則以1,3-烯炔酯之連鎖反應為主題,在不含金屬的有機催化系統中,加入20 mol% DABCO,與(E)-2-((2-羥基亞芐基)氨基)丙二酸二乙酯於50 ℃下成功地進行 Michael/Cyclization/Mannich-type cyclization/O-rearrangement連鎖反應,一次性建構多個碳-碳鍵及三個立體化學中心,合成高度官能基化之雙五員環硝酮產物,產率19-79%。透過高解析質譜儀(ESI-TOF)追蹤反應中間體,推測DABCO鹼性及親核試劑之雙功能催化,致使反應能快速地在5小時內完成,且非鏡像異構物比均高達>20:1。
There are three chapters in this thesis. The first chapter mainly covered the development of stereochemistry in organic reaction briefly. This is to emphasize the importance of chiral molecules will play in various fields, some literatures for synthesizing chiral products were reviewed.
The second part is focused on the kinetic resolution of racemic MBH nitroallylic amine: when aldehyde was reacted with 50 mol% of Jørgenson-Hayashi’s catalyst, chiral enamine was proceeded asymmetric addition with (R)-nitroallylic amine. Resting intermediates 6-membered dihydrooxazine N-oxide were isolated at this stage. Further hydrolysis with 4-nitrophenol gave (2R,3S,4R)-tetrahydropyridine products (84-98% ee). The (S)-nitroallylic amines were also resolved with high levels of enantioselectivity (56-96% ee). In the presence of 20 mol% of catalyst, there were existing kinetic and thermodynamic tetrahydropyridine products in the reaction, epimerization process was then enforced kinetic product transfer to thermodynamic product by employing with 20 mol% Et3N to accomplish with good to excellent stereoselectivity (8:1-20:1 dr; 70-84% ee). It was also claimed that the hydrolysis step is the rate-determining step through theoretical calculation.
In the third section, the use of cascade reaction to construct multiple C-C bonds and build up complex scaffold was highlighted. The reaction was performed with 1,3-enynoates, 2-hydroxybenzylideneamino malonates and 20 mol% of DABCO at 50 ℃. Highly functionalized hexahydropyrrolo[3,4-b]pyrrole 1-oxide products were obtained (through Michael/Cyclization/Mannich-type cyclization/O-rearrangement) with 19-79% yields. All reactions could be completed within 5 hours and gave >20:1 dr. The intermediate was identified by HRMS to provide a reasonable mechanism.
第一章 立體化學簡介
[1] D. Nasipuri (1994). Stereochemistry of Organic Compounds: Principles and Ap-plication ( 2nd ed.). New Age International Ltd.
[2] E. Juaristi (1991) Introduction to Stereochemistry & Conformational Analysis. Wiley Interscience.
[3] W. Marckwald, Berichte, 1904, 37, 1368.
[4] J. D. Morrison, and H. S. Mosher (1976), Asymmetric Organic Reactions, Ameri-can Chemical Society: Washington, pp. 4-6.
[5] Y. Izumi, and A. Tai (1977). Stereo-Differentiating Reactions. Acdamic Press: New York.
[6] (a) A. McKenzie, J. Chem. Soc. 1904, 85, 1249. (b) V. Prelog, Helv. Chim. Acta. 1953, 36, 308.
[7] H. C. Brown and G. Zweifel, J. Am. Chem. Soc. 1959, 81, 247.
[8] (a) D. J. Cram, and F. A. Abd Elhafez, J. Am. Chem. Soc. 1952, 74, 5285. (b) D. J. Cram, and J. D. Knight, J. Am. Chem. Soc. 1952, 74, 5835.
[9] (a) M. Chérest, H. Felkin, and N. Prudent, Tetrahedron Lett. 1968, 9, 2199. (b) N. T. Anh and O. Eisenstein, Nouv. J. Chim. 1977, 1, 61.
[10] D. J. Cram, and K. R. Kopecky, J. Am. Chem. Soc. 1959, 81, 2748.
[11] T. Hanamoto, and T. Fuchikami, J. Org. Chem. 1990, 55, 4969.
[12] E. L. Eliel, and S. H. Wilen (1994). Stereochemistry of Organic Compounds, Wiley Interscience,
[13] (a) E. J Corey, E. J. Trybulski, L. S. Melvin, K. C. Secrist, J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F. Haslanger, S. Kim, and S. Yoo, J. Am. Chem. Soc. 1978, 100, 4618. (b) E. J Corey, S. Yoo, K. C. Nicolaou, L. S. Melvin, D. J. Brunelle, J. R. Falck, E. J. Trybulski, R. Lett, and P. W. Sheldrake, J. Am. Chem. Soc. 1978, 100, 4620.
[14] E. L. Eliel, and A. A. Hartmann, J. Am. Chem. Soc. 1971, 93, 2572.
[15] A. G. Abatjoglu, E. L. Eliel, and L. F. Kuyper J. Am. Chem. Soc. 1977, 99, 8262.
[16] J. M. Lehn, and G. Wipff, J. Am. Chem. Soc. 1976, 98, 7498.
[17] D. Seebach, and J. D. Aebi, Tetrahedron Lett. 1983, 24, 3111.
[18] D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. Soc. 1988, 110, 1238.
[19] E. J. Corey, and H. E. Ensley, J. Am. Chem. Soc. 1975, 97, 6908.
[20] D. A. Evans, J. Bartroli, and T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2129.
[21] D. A. Evans, M. D. Ennis, and D. J. Mathre, J. Am. Chem. Soc. 1982, 104, 1739.
[22] W. Oppolzer, Tetrahedron Lett. 1987, 43, 1969.
[23] A. Reychler, Bull. Soc. Chim. Paris 1898, 19, 120.
[24] S. H. Wilen. Topics in Stereochemistry 1971, 6, 107.; Tables of Resolving Agents and Optical Resolutions (Edited by E. L. Eliel).
[25] (a) A. McKenzie, J. Chem. Soc. 1906, 365. (b) A. McKenzie and H. Wren, J. Chem. Soc. 1906, 688.
[26] (a) C.-L. Chang, and K. Chen, J. Chin. Chem. Soc. 2007, 54, 1591. (b) J.-F. Pang, and K. Chen Tetrahedron Lett. 2004, 45, 2541. (c) S.-G. Wang, H. R. Tsai, and K. Chen, Tetrahedron Lett. 2004, 45, 6183.
[27] (a) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395. (b) K. Sakthivel, W. Notz, T. Bui, and C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260.
[28] (a) K. Juhl, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2003, 42, 1498. (b) T. C. Wabnitz, S. Saaby, and K. A. Jørgensen, Org. Biomol. Chem. 2004, 2, 828.
[29] T. Bui, and C. F. Barbas III, Tetrahedron Lett. 2000, 41, 6951.
[30] (a) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, and K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248. (b) B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860. (c) L.-W. Xu, L. Li, and Z.-H. Shi, Adv. Synth. Catal. 2010, 352, 243. (d) A. Mielgo, and C. Palomo, Chem.–Asian J. 2008, 3, 922.
[31] M. Marigo, T. C. Wabnitz, D. Fielenbach, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794.
[32] Y. Hayashi, H. Gotoh, T. Hayashi, and M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212.
[33] (a) J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard, and K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296. Conjugate addition: (b) S. Sul-zer-Mossé, M. Tissot, and A. Alexakis, Org. Lett. 2007, 9, 3749. (c) G.-L. Zhao, Y. Xu, H. Sundén, L. Eriksson, M. Sayah, and A. Córdova, Chem. Commun. 2007, 734. (d) Q. Zhu, and Y. Lu, Org. Lett. 2008, 10, 4803. (e) N. T. Vo, R.D. M. Pace, and F. O’Hara, J. Am. Chem. Soc. 2008, 130, 404. Aldol Reaction: (f) R. K. Boeckman, and J. R. Miller, Org. Lett. 2009, 11, 4544. (g) R. K. Boeckman, Jr., K. F. Biegasiewicz, D. J. Tusch, and J. R. Miller, J. Org. Chem. 2015, 80, 4030. Man-nich reaction: (h) Y. Chi, and S. H. Gellman, J. Am. Chem. Soc. 2006, 128, 6804. (i) I. Ibrahem, G.-L. Zhao, and A. Córdova, Chem. Eur. J. 2007, 13, 683. α-Alkyl-ation: (j) J. Xiao, K. Zhao, and T.-P. Lo, Chem. Commun. 2012, 48, 3548. α-Ary-lation: (k) J. Alemán, S. Cabrera, E. Maerten, J. Overgaard, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2007, 46, 5520. α-Fluorination: (l) M. Marigo, D. Fielen-bach, A. Braunton, A. Kjærsgaard, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 3703. α-Amination: (m) C. Palomo, S. Vera, I. Velilla, A. Mielgo, and E. Gómez-Bengoa, Angew. Chem. Int. Ed. 2007, 46, 8054. (n) I. Ibrahem, G.-L. Zhao, H. Sundén, and A. Córdova, Tetrahedron Lett. 2006, 47, 4659.
[34] (a) S. Bertelsen, M. Marigo, S. Brandes, P. Dinér, and K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973. (b) B. C. Hong, M.-F. Wu, H.-C. Tseng, G.-F. Huang, C.-F. Su, and J.-H. Liao, J. Org. Chem. 2007, 72, 8459. (c) R. M. de Figueiredo, R. Fröhlich, and M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450. (d) B. Han, Z.-Q. He, J.-L. Li, R. Li, K. Jiang, T.-Y. Liu, and Y.-C. Chen, Angew. Chem. Int. Ed. 2009, 48, 5474. (e) J.-L. Li, T.-R. Kang, S.-L. Zhou, R. Li, L. Wu, and Y.-C. Chen, Angew. Chem. Int. Ed. 2010, 49, 6418. (f) J. Stiller, E. Marqués-López, R. P. Herrera, R. Fröhlich, C. Strohmann, and M. Christmann, Org. Lett. 2011, 13, 70.
[35] (a) Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, and K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053. (b) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen, and K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 12943. (c) C. V. Gómez, D. C. Cruz, R. Mose, and K. A. Jørgensen, Chem. Commun. 2014, 50, 6035. (d) H. Jiang, D. C. Cruz, Y. Li, V. H. Lauridsen, and K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 5200. (e) J.-X. Liu, Q.-Q. Zhou, J.-G. Deng, and Y.-C. Chen, Org. Biomol. Chem. 2013, 11, 8175.
[36] (a) J. Stiller, P. H. Poulsen, D. C. Cruz, J. Dourado, R. L. Davis, and K. A. Jørgen-sen, Chem. Sci. 2014, 5, 2052. (b) Q.-Q. Zhou, Y.-C. Xiao, X. Yuan, and Y.-C. Chen, Asian J. Org. Chem. 2014, 3, 545.
[37] M. Marigo, T. Schulte, J. Franzén, and K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 15710.
[38] M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, and K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964.
[39] (a) J. Vesely, I. Ibrahem, G.-L. Zhao, R. Rios, and A. Córdova, Angew. Chem. Int. Ed. 2007, 46, 778. (b) H. Arai, N. Sugaya, N. Sasaki, K. Makino, S. Lectard, and Y. Hamada, Tetrahedron Lett. 2009, 50, 3329.
[40] (a) Y.-H. Zhao, G. Zhao, W.-G. Cao, Tetrahedron: Asymmetry 2007, 18, 2462. (b) R. Rios, H. Sundén, J. Vesely, G.-L. Zhao, P. Dziedzic, and A. Córdova, Adv. Synth. Catal. 2007, 349, 1028. (c) V. Terrasson, A. van der Lee, R. M. de Figueiredo, and J. M. Campagne, Chem. Eur. J. 2010, 16, 7875.
[41] M. Marigo, S. Bertelsen, A. Landa, and K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 5475.
[42] G. Lelais, and D. W. C. MacMillan, Aldrichmica Acta 2006, 39, 79.
[43] K. A. Ahrendt, C. J. Borths, and D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243.
[44] W. S. Jen, J. J. M. Wiener, and D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874.
[45] N. A. Paras, and D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370.
[46] (a) J. F. Austin, and D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172. (b) N. A. Paras, and D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 7894. (c) S. P. Brown, N. C. Goodwin, and D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 1192.
[47] (a) C. E. Song (2009). Cinchona Alkaloids in Synthesis and Catalysis. Wiley-VCH Verlag GmbH & Co. kGaA (b) M. S. Taylor, and E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520. (c) S. J. Connon, Chem. Commun. 2008, 2499.
[48] (a) G. Bredig, and P. S. Fiske, Biochem. Z. 1912, 46, 7. (b) G. Bredig, and M. Minaeff, Biochem. Z. 1932, 249, 241.
[49] (a) H. Pracejus, Justus Liebigs Ann. Chem. 1960, 634, 9. (b) H. Pracejus, and H. Mätje, J. Prakt. Chem. 1964, 24, 195.
[50] H. Hiemstra, and H. Wynberg, J. Am. Chem. Soc. 1981, 103, 417.
[51] (a) H. C. Kolb, M. S. VanNieuwenze, and K. B. Sharpless, Chem. Rev. 1994, 94, 2483. (b) H. C. Kolb, and K. B. Sharpless (1998). Transition Metals for Organic Synthesis, vol. 2 (eds M. Beller and C. Bolm) Wiley-VCH Verlag GmbH, Wein-heim, p. 219.
[52] (a) D. P. Curran, and L. H. Kuo, J. Org. Chem. 1994, 59, 3259. (b) D. P. Curran, and L. H. Kuo, Tetrahedron Lett. 1995, 36, 6647.
[53] M. S. Sigman, and E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
[54] (a) P. R. Schreiner, and A. Wittkopp, Org. Lett. 2002, 4, 217. (b) P. R. Schreiner, and A. Wittkopp, Chem.–Eur. J. 2003, 9, 407.
[55] T. Okino, Y. Hoashi, and Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672.
[56] B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, and Y. Wu, Synlett 2005, 603.
[57] (a) S. H. McCooey, and S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367. (b) J. Ye, D. J. Dixon, and P. S. Hynes, Chem. Commun. 2005, 4481.
[58] (a) J. P. Malerich, K. Hagihara, and V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416. (b) J. Alemán, A. Parra, H. Jiang, and K. A. Jørgensen, Chem. Eur. J. 2011, 17, 6890.
[59] (a) T. Akiyama, J. Itoh, K. Yokota and K. Fuchibe, Angew. Chem. Int. Ed. 2004, 43, 1566. (b) D. Uraguchi, and M. Terada, J. Am. Chem. Soc. 2004, 126, 5356.
[60] (a) R. I. Storer, D. E. Carrera, Y. Ni, and D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84. (b) M. Reuping, E. Sugiono, C. Azap, T. Theissmann, and M. Bolte, Org. Lett. 2005, 7, 3781.
[61] L. Simón, and J. M. Goodman, J. Am. Chem. Soc. 2008, 130, 8741.
[62] (a) D. Uraguchi, K. Sorimachi, and M. Terada, J. Am. Chem. Soc. 2004, 126, 11804. (b) D. Uraguchi, K. Sorimachi, and M. Terada, J. Am. Chem. Soc. 2005, 127, 9360. (c) T. Akiyama, H. Morita, J. Itoh, and K. Fuchibe, Org. Lett. 2005, 7, 2583.
[63] (a) I. T. Raheem, P. S. Thiara, E. A. Peterson, and E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 13404. (b) S. E. Reisman, G. Doyle, and E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 7198.
[64] (a) T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, and D. W. C. MacMillan, Science 2007, 316, 582. (b) H.-Y. Jang, J.-B. Hong, and D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004. (c) H. Kim, and D. W. C. MacMillan, J. Am. Chem. Soc. 2008, 130, 398. (d) S. Rendler, and D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 5027.
[65] M.-H. Le Tadic-Biadatti, and M. Newcomb, J. Chem. Soc., Perkin Trans. 2, 1996, 1467.
第二章 硝基丙烯胺之連鎖動力學分割反應
[1] (a) J. M. Keith, J. F. Larrow, and E. N. Jacobson, Adv. Synth. Catal. 2001, 343, 5. (b) E. Vedejs, and M. Jure, Angew. Chem. Int. Ed. 2005, 44, 3974.
[2] (a) G. Bredig, and K. Fajans, Ber. Dtsch. Chem. Ges. 1908, 41, 752. (b) K. Fajans, Z. Phys. Chem. 1910, 73, 25. c) H. B. Kagan and J. C. Fiaud, (1988). Kinetic Res-olution. In E. L. Eliel, and S. H. Wilen (Eds.) Topics in Stereochemistry (vol. 18, p. 249) John Wiley & Sons, Inc.
[3] E. Juaristi (1991). Introduction to Stereochemistry & Conformational Analysis, Wiley Interscience.
[4] (a) W. Marckwald, and A. McKenzie, Ber. Dtsch. Chem. Ges. 1899, 32, 2130. (b) W. Marckwald, and A. McKenzie, Ber. Dtsch. Chem. Ges. 1901, 34, 469.
[5] H. D. Dakin, J. Physiol. 1904, 30, 253.
[6] V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, and K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 6237.
[7] (a) T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974. (b) E. J. Corey, J. Org. Chem. 1990, 55, 1693.
[8] Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc. 1987, 109, 5765.
[9] (a) Y. Kitano, T. Matsumoto, and F. Sato, J. Chem. Soc., Chem. Commun. 1986, 1323. (b) Y. Kitano, T. Matsumoto, Y. Takeda, and F. Sato, J. Chem. Soc., Chem. Commun. 1986, 1732. (c) Y. Kitano, T. Matsumoto, S. Okamoto, T. Shimazaki, Y. Kobayashi, and F. Sato, Chem. Lett. 1987, 1523. (d) Y. Kitano, T. Matsumoto, T. Wakasa, S. Okamoto, T. Shimazaki, Y. Kobayashi, and F. Sato, Tetrahedron Lett. 1987, 28, 6351. (e) Y. Kitano, T. Matsumoto, and F. Sato, Tetrahedron 1988, 44, 4073.
[10] (a) T. Kametani, M. Tsubuki, Y. Tatsuzaki, and T. Honda, Heterocycles 1988, 27, 2107. (b) Y. Kobayashi, M. Kusakabe, Y. Kitano, and F. Sato, J. Org. Chem. 1988, 53, 1586. (c) M. Kusakabe, Y. Kitano, Y. Kobayashi, and F. Sato, J. Org. Chem. 1989, 54, 208. (d) Z.-C. Yang, and W.-S. Zhou, Tetrahedron Lett. 1995, 36, 5617. (e) T. Honda, N. Sano, and K. Kanai, Heterocycles 1995, 41, 425. (f) Z.-C. Yang, X.-B. Jiang, Z.-M. Wang, and W.-S. Zhou, J. Chem. Soc., Chem. Commun. 1995, 2389. (g) Z.-C. Yang, X.-B. Jiang, Z.-M. Wang, and W.-S. Zhou, J. Chem. Soc., Perkin Trans. 1 1997, 317. (h) K. Kanai, N. Sano, and T. Honda, Heterocycles 1999, 50, 433.
[11] (a) W.-S. Zhou, Z.-H. Lu, and Z.-M. Wang, Tetrahedron Lett. 1991, 32, 1467. (b) Z.-H. Lu, and W.-S. Zhou, J. Chem. Soc., Perkin Trans. 1 1993, 593. (c) W.-S. Zhou, W.-G. Xie, Z.-H. Lu, and X.-F. Pan, J. Chem. Soc., Perkin Trans. 1 1995, 2599. (d) W.-S. Zhou, Z.-H. Lu, and Z.-M. Wang, Tetrahedron 1993, 49, 2641. (e) L.-X. Liao, and W.-S. Zhou, Tetrahedron 1998, 54, 12571. (f) W.-S. Zhou, and D. Wei, Tetrahedron: Asymmetry 1991, 2, 767. (g) Z. H. Lu, X. Y. Zhu, and W.-S. Zhou, Chin. Chem. Lett. 1994, 5, 567.
[12] (a) J. C. Ruble, and G. C. Fu, J. Org. Chem. 1996, 61, 7230. (b) J. C. Ruble, H. A. Latham, and G. C. Fu, J. Am. Chem. Soc. 1997, 119, 1492.
[13] J. C. Ruble, J. Tweddell, and G. C. Fu, J. Org. Chem. 1998, 63, 2794.
[14] T. Sano, K. Imai, K. Ohashi, and T. Oriyama, Chem. Lett. 1999, 28, 265.
[15] S. Harada, S. Kuwano, Y. Yamaoka, K.-i. Yamada, and K. Takasu, Angew. Chem. Int. Ed. 2013, 52, 10227.
[16] M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R. T. Robinson, C. Fallan D. B. Cordes, A. M. Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong, and A. D. Smith, Angew. Chem. Int. Ed. 2018, 57, 3200.
[17] M. Kitamura, I. Kashara, K. Manabe, R. Noyori, and H. Takaya, J. Org. Chem. 1988, 53, 710.
[18] A. Bongers, P. J. Moon, and A. M. Beauchemin, Angew. Chem. Int. Ed. 2015, 54, 15516.
[19] A. Peschiulli, B. Procuranti, C. J. O’Connor, and S. J. Connon, Nat. Chem. 2010, 2, 380.
[20] (a) P. G. McGarraugh and S. E. Brenner-Moyer, Org. Lett. 2011, 13, 6460. (b) P. G. McGarraugh, R. C. Johnston, A. Martínez-Muñoz, P. H.-Y. Cheong, and S. E. Brenner-Moyer, Chem. Eur. J. 2012, 18, 10742.
[21] (a) Z. Suzuki, H. Hirose, and K.-i. Morita, Chem. Soc. Jpn. 1968, 41, 2815. (b) A. B. Baylis, and M. E. D. Hillman, Ger. Offen. 2155113, 1972. (c) A. B. Baylis, and M. E. D. Hillman, Chem. Abstr. 1972, 77, 34174q. d) M. E. D. Hillman, and A. B. Baylis, U.S. Patent 3,743,669, 1972.
[22] (a) V. Declerck, J. Martinez, and F. Lamaty, Chem. Rev. 2009, 109, 1. (b) G. Mas-son, C. Housseman, and J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 4614. (c) D. Basavaiah, A. J. Rao, and T. Satyanarayana, Chem. Rev. 2003, 103, 811. (d) D. Basavaiah, K. V. Rao, and R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581. (e) D. Basavaiah, P. D. Rao, and R. S. Hyma, Tetrahedron 1996, 52, 8001. (f) D. Basa-vaiah, B. S. Reddy, and S. S. Badsara, Chem. Rev. 2010, 110, 5447. (g) V. Singh, and S. Batra, Tetrahedron 2008, 64, 4511. (h) D. Basavaiah, and G. Veerara-ghavaiah, Chem. Soc. Rev. 2012, 41, 68. (i) Y. Wei, and M. Shi, Chem. Rev. 2013, 113, 6659. (j) K. Kaur, and I. N. N. Namboothiri, Chimia 2012, 66, 913. (k) W.-Y. Huang, S. Anwar, and K. Chen, Chem. Rec. 2017, 17, 363.
[23] N. Rastogi, and I. N. N. Namboothiri, M. Cojocaru, Tetrahedron Lett. 2004, 45, 4745.
[24] (a) I. Deb, M. Dadwal, S. M. Mobin, and I. N. N. Namboothiri, Org. Lett. 2006, 8, 1201. (b) I. Deb, P. Shanbhag, S. M. Mobin, and I. N. N. Namboothiri, Eur. J. Org. Chem. 2009, 4091.
[25] H.-H. Kuan, R. J. Reddy, and K. Chen, Tetrahedron 2010, 66, 9875.
[26] T. Kumar, S. M. Mobin, and I. N. N. Namboothiri, Tetrahedron 2013, 69, 4964.
[27] (a) R. J. Reddy, and K. Chen, Org. Lett. 2011, 13, 1458. (b) R. J. Reddy, P.-H. Lee, D. R. Magar, J.-H. Chen, and K. Chen, Eur. J. Org. Chem. 2012, 353.
[28] (a) L. F. Yeh, S. Anwar, and K. Chen, Tetrahedron, 2012, 68, 7317. (b) S. Roy, and K. Chen, Org. Lett. 2012, 14, 2496.
[29] (a) C. Paal, Chem. Ber. 1884, 17, 2756. (b) L. Knorr, Chem. Ber. 1884, 17, 2863.
[30] (a) F. Feist, Chem. Ber. 1902, 35, 1537. (b) E. Bénary, Chem. Ber.1911, 44, 489.
[31] (a) D. K. Nair, S. M. Mobin, and I. N. N. Namboothiri, Tetrahedron Lett. 2012, 53, 3349. (b) V. Mane, T. Kumar, S. Pradhan, S. Katiyar, and I. N. N. Namboothiri, RSC Adv. 2015, 5, 69990.
[32] W.-Y. Huang, Y.-C. Chen, and K. Chen, Chem. Asian J. 2012, 7, 688.
[33] (a) T. Kumar, S. M. Mobin, and I. N. N. Namboothiri, Tetrahedron 2013, 69, 4964. (b) S. Anwar, W.-Y. Huang, C.-H. Chen, Y.-S. Cheng, and K. Chen, Chem. Eur. J. 2013, 19, 4344.
[34] T. Chen, N. Shao, H. Zhu, B. Zhang, and H. Zou, Tetrahedron 2013, 69, 10558.
[35] D. R. Magar, Y.-J. Ke, and K. Chen, Asian J. Org. Chem. 2013, 2, 330.
[36] N. Shao, T. Chen, T. Zhang, H. Zhu, Q. Zheng, and H. Zou, Tetrahedron 2014, 70, 795.
[37] D. K. Nair, S. M. Mobin, and I. N. N. Namboothiri, Org. Lett. 2012, 14, 4580.
[38] H. Zhu, N. Shao, T. Chen, and H. Zou, Chem. Commun. 2013, 49, 7738.
[39] N. Rastogi, R. Mohan. D. Panda, S. M. Mobin, and I. N. N. Namboothiri, Org. Biomol. Chem. 2006, 4, 3211.
[40] S. Takizawa, A. Horii, and H. Sasai, Tetrahedron: Asymmetry, 2010, 21, 891.
[41] X. Wang, Y.-F. Chen, L.-F. Niu, and P.-F. Xu, Org. Lett. 2009, 11, 3310.
[42] Y. Wang, S. Zhu, and D. Ma, Org. Lett. 2011, 13, 1602.
[43] B. Han, X. Xie, W. Huang, X. Li, L. Yang, and C. Peng, Adv. Synth. Catal. 2014, 356, 3676.
[44] R. Gurubrahamam, Y.-S. Cheng, and K. Chen, Org. Lett. 2015, 17, 430.
[45] (a) J. Burés, A. Armstrong, and D. G. Blackmond, J. Am. Chem. Soc. 2011, 133, 8822. (b) K. Patora-Komisarska, M. Benohoud, H. Ishikawa, D. Seebach, and Y. Hayashi, Helv. Chim. Acta 2011, 94, 719. (c) J. Burés, A. Armstrong, and D. G. Blackmond, J. Am. Chem. Soc. 2012, 134, 6741. (d) C. Moberg, Angew. Chem. Int. Ed. 2013, 52, 2160.
[46] (a) D. Seebach, X. Sun, C. Sparr, M.-O. Ebert, W. B. Schweizer, and A. K. Beck, Helv. Chim. Acta 2012, 95, 1064. (b) G. Sahoo, H. Rahaman, A. Madarász, I. Pápai, M. Melarto, A. Valkonen, and P. M. Pihko, Angew. Chem. Int. Ed. 2012, 51, 13144. (c) D. Seebach, X. Sun, M.-O. Ebert, W. B. Schweizer, N. Purkayastha, A. K. Beck, J. Duschmalé, H. Wennemers, T. Mukaiyama, M. Benohoud, Y. Hayashi, M. Reiher, Helv. Chim. Acta 2013, 96, 799.
第三章 丙二酸二乙酯衍生物與1,3-烯炔酯之有機連鎖反應製備硝酮衍生物
[1] C. Grondal, M. Jeanty, and D. Enders, Nat. Chem. 2010, 2, 167.
[2] D. W. C. MacMillan, Nature 2008, 445, 304.
[3] (a) F.-L. Zhang, A.-W. Xu, Y.-F. Gong, M.-H. Wei, and X.-L. Yang, Chem. Eur. J. 2009, 15, 6815. (b) P. Kotame, B.-C. Hong, and J.-H. Liao, Tetrahedron Lett. 2009, 50, 704. (c) D. Enders, R. Krüll, and W. Bettray, Synthesis, 2010, 567.
[4] M. S. Taylor, and E. N. Jacobsen, Angew. Chem. Int. Ed. 2006,45, 1520.
[5] T. Akiyama, J. Itoh, and K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999.
[6] D. Enders, O. Niemeier, and A. Henseler, Chem. Rev. 2007, 107, 5606.
[7] C. M. R. Volla, I. Atodiresei, and M. Rueping, Chem. Rev. 2014, 114, 2390.
[8] (a) U. Eder, G. Sauer, and R. Wiechert, Angew. Chem. Int. Ed. 1971, 10, 496. (b) Z. G. Hajos, and D. R. Parrish, J. Org. Chem. 1974, 39, 1615.
[9] T. Bui, and C. F. Barbas III, Tetrahedron Lett. 2000, 41, 6951.
[10] Y. Huang, A. M. Walji, C. H. Larsen, and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 15051.
[11] (a) A. Mielgo, and C. Palomo, Chem. Asian J. 2008, 3, 922. (b) L.-W. Xu, L. Li, and Z.-H. Shi, Adv. Synth. Catal. 2010, 352, 243. (c) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, and K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248. (d) M. Marigo, T. C. Wabnitz, D. Fielenbach, and K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794. (e) Y. Hayashi, H. Gotoh, T. Hayashi, and M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212.
[12] (a) H.-H. Kuan, C.-H. Chien, and K. Chen, Org. Lett. 2013, 15, 2880. (b) S. Anwar, S. M. Li, and K. Chen, Org. Lett. 2014, 16, 2993.
[13] D. Enders, C. Grondal, and M. R. M. Hüüttl, Angew. Chem. Int. Ed. 2007, 46, 1570.
[14] (a) Y. Hoashi, T. Yabuta, and Y. Takemoto, Tetrahedron Lett. 2004, 45, 9185; (b) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe, and Y. Takemoto, Tetrahedron 2006, 62, 365.
[15] Y.-P. Chang, R. Gurubrahamam, and K. Chen, Org. Lett. 2015, 17, 2908.
[16] M. Amireddy, and K. Chen, RSC Adv. 2016, 6, 77474.
[17] (a) M. Rueping, A. P. Antonchick, and T. Theissmann, Angew. Chem. Int. Ed. 2006, 45, 3683. (b) M. Rueping, and A. P. Antonchick, Angew. Chem. Int. Ed. 2007, 46, 4562.
[18] K. C. Nicolaou, D. J. Edmonds, and P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134.
[19] R. Robinson, J. Chem. Soc. Trans. 1917, 762.
[20] (a) W. S. Johnson, M. B. Gravestock, and B. E. McCarry, J. Am. Chem. Soc. 1971, 93, 4332. (b) M. B. Gravestock, W. S. Johnson, B. E. McCarry, R. J. Parry, and B. E. Ratcliffe, J. Am. Chem. Soc. 1978, 100, 4274.
[21] (a) W. M. Bandaranayake, J. E. Banfield, D. St. C. Black, G. D. Fallon, and B. M. Gatehouse, J. Chem. Soc. Chem. Commun. 1980, 162. (b) W. M. Bandaranayake, J. E. Banfield, and D. St. C. Black, J. Chem. Soc. Chem. Commun. 1980, 902. (c) W. M. Bandaranayake, J. E. Banfield, and D. St. C. Black, Aust. J. Chem. 1981, 34, 1655. (d) W. M. Bandaranayake, J. E. Banfield, and D. St. C. Black, Aust. J. Chem. 1982, 35, 557. (e) W. M. Bandaranayake, J. E. Banfield, D. St. C. Black, G. D. Fallon, and B. M. Gatehouse, Aust. J. Chem. 1982, 35, 567. (f) J. E. Banfield, D. St. C. Black, S. R. Johns, and R. I. Willing, Aust. J. Chem. 1982, 35, 2247.
[22] (a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi, J. Am. Chem. Soc. 1982, 104, 5555. (b) K. C. Nicolaou, N. A. Petasis, J. Uenishi, and R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5557. (c) K. C. Nicolaou, R. E. Zipkin, and N. A. Petasis, J. Am. Chem. Soc. 1982, 104, 5558. (d) K. C. Nicolaou, N. A. Petasis, and R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5560.
[23] D. P. Curran, and M.-H. Chen, Tetrahedron Lett. 1985, 26, 499.
[24] (a) A. Dömling, and I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168. (b) J. Zhu, Eur. J. Org. Chem. 2003, 1133. (c) A. Dömling, Chem. Rev. 2006, 106, 17.
[25] A. Dömling, Comb. Chem. High Throughput Screening 1998, 1, 1.
[26] (a) Y. Zang, Y.-F. Ao, Z.-T. Huang, D.-X. Wang, M.-X. Wang, and J. Zhu, Angew. Chem. Int. Ed. 2016, 55, 5282. (b) Z. Zhang, P. Yu, S.-Yu Li, S.-H. Xiang, J. Wang, K. N. Houk, and B. Tan, Science 2018, 261, 1087.
[27] A. Endo, A. Yanagisawa, M. Abe, S. Tohma, T. Kan, and T. Fukuyama, J. Am. Chem. Soc. 2002, 124, 6552.
[28] (a) E. J. Corey, and S. Lin, J. Am. Chem. Soc. 1996, 118, 8765. (b) E. J. Corey, S. Lin, and G. Luo, Tetrahedron Lett. 1997, 38, 5771.
[29] J. Alemán, and S. Cabrera, Chem. Soc. Rev. 2013, 42, 774.
[30] M. Misra, S. K. Pandey, V. P. Pandey, J. Pandey, R.Tripathi and R. P. Tripathi, Bioorg. Med. Chem. 2009, 17, 625.
[31] D. B. Ramachary, Y. V. Reddy, A. Banerjee and S. Banerjee, Org. Biomol. Chem. 2011, 9, 7282.
[32] X. Li, F. Peng, M. Zhou, M. Mo, R. Zhao, and Z. Shao, Chem. Commun. 2014, 50, 1745.
[33] C. R. Reddy, and M. D. Reddy, J. Org. Chem. 2014, 79, 106.
[34] S. Belot, K. A. Vogt, C. Besnard, N. Krause, A. Alexakis, Angew. Chem. Int. Ed. 2009, 48, 8923.
[35] D. Hack, P. Chauhan, K. Deckers, Y. Mizutani, G. Raabe, and D. Enders, Chem. Commun. 2015, 51, 2266.
[36] (a) G. Bharathiraja, S. Sakthivel, M. Sengoden, and T. Punniyamurthy, Org. Lett. 2013, 15, 4996. (b) G. Bharathiraja, M. Sengoden, M. Kannan, and T. Punniya-murthy, Org. Biomol. Chem. 2015, 13, 2786. (c) G. Bharathiraja, G. Sathishkannan, and T. Punniyamurthy, J. Org. Chem. 2016, 81, 2670.
[37] F. Liu, D. Qian, L. Li, X. Zhao, and J. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6669.
[38] S. Biswas, A. Dagar, S. M. Mobin, and S. Samanta, Org. Biomol. Chem. 2016, 14, 1940.
[39] R. Gurubrahaman, B.-F. Gao, Y. Chen, Y.-T. Chan, M.-K. Tsai, and K. Chen, Org. Lett. 2016, 18, 3098.
[40] Y. Xiao, J.-B. Lin, Y.-N. Zhao, J.-Y. Liu, and P.-F. Xu, Org. Lett. 2016, 18, 6276.
[41] C.-Y. Wu, and K. Chen, ChemistrySelect 2018, 3, 3500.
[42] N. K. Rana, R. K. Jha, H. Joshi, and V. K. Singh, Tetrahedron Lett. 2017, 58, 2135.
[43] Z.-M. Xing, L.-L. Song, F.-X. Li, N.-S. Xu, L.-F. Wang, Z.-F. Shi, and X.-P. Cao, Adv. Synth. Catal. 2017, 359, 1892.
[44] (a) R. Maity, S. C. Sahoo, and S. C. Pan, Eur. J. Org. Chem. 2019, 2297. (b) J. Liu, S.-S. Wen, J. Wang, J.-A. Xiao, S.-J. Huang, and H. Yang, Tetrahedron 2015, 71, 4629. (c) J. Hu, D. Liu, W. Xu, F. Zhang, and H. Zheng, Tetrahedron 2014, 70, 7511. (d) J. Hu, Z. Deng, X. Zhang, F. Zhang, and H. Zheng, Org. Biomol. Chem. 2014, 12, 4885. (e) X.-H. Liu, Y.-M. Jia, B.-A. Song, Z.-X. Pang, and S. Yang, Bioorg. Med. Chem. Lett. 2013, 23, 720. (f) Q.-B. Li, F.-T. Zhou, Z.-G. Liu, X.-F. Li, W.-D. Zhu, and J.-W. Xie, J. Org. Chem. 2011, 76, 7222. (g) J.-W. Xie, X. Huang, L.-P. Fan, D.-C. Xu, X.-S. Li, H. Su, and Y.-H. Wen, Adv. Synth. Catal. 2009, 351, 3077. (h) S. Malik, U. K. Nadir, and P. S. Pandey, Tetrahedron 2009, 65, 3918. (i) J. Světlik and L. Šallai, J. Heterocyclic Chem. 2002, 39, 363.
[45] (a) A. Brandi, Y. Dürüst, F. M. Cordero, and F. D. Sarlo, J. Org. Chem. 1992, 57, 5666. (b) M. Miura, M. Enna, K. Okuro, and M. Momura, J. Org. Chem. 1995, 60, 4999. (c) A. Goti, B. Anichini, and A. Brandi, J. Org. Chem.1996, 61, 1665. (d) I. Nakamura, K. Takeda, Y. Sato, and M. Terada, Chem. Eur. J. 2017, 23, 7686.
[46] (a) M. Kinugasa, S. Hashimoto, J. Chem. Soc., Chem. Commun. 1972, 466. (b) R. K. Khangarot, and K. P. Kaliappan, Eur. J. Org. Chem. 2013, 7664. (c) K. Stecko, B. Furman, and M. Chmielewski, Tetrahedron 2014, 70, 7817. (d) R. Shintani, and G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 4082. (e) J. Marco-Contelles, Angew. Chem. Int. Ed. 2004, 43, 2198. (f) M.-C. Ye, J. Zhou, and Y. Tang, J. Org. Chem. 2006, 71, 3576. (g) J.-H. Chen, S.-H. Liao, X.-L. Sun, and Y Tang, Tetrahedron 2012, 68, 5042.
[47] M. Guo, D. Li, Z. Zhang, J. Org. Chem. 2003, 68, 10172.
[48] N. J. A. Martin, X. Cheng, B. List, J. Am. Soc. Chem. 2008, 130, 13862.