研究生: |
張冠文 Kuan-Wen Chang |
---|---|
論文名稱: |
模糊推論積分型滑動模式之小腦模型控制器設計 Design of Fuzzy based Integral Sliding Mode Using Cerebellar Model Articulation Controller |
指導教授: |
洪欽銘
Hong, Chin-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 可變結構控制 、滑動模式 、模糊推論 、強健性 、不敏性 、小腦模型控制器 、類化能力 |
英文關鍵詞: | Integral Sliding Mode,, Sliding mode,, robust,, invariance property,, Cerebellar Model, Articulation Controller,, generalization |
論文種類: | 學術論文 |
相關次數: | 點閱:265 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對傳統可變結構控制(Variable Structure Control,簡稱VSC)之
滑動(sliding)模式下會發生高速顫動(chattering)現象,將使系統產生不想要
的高頻成分,甚至造成系統不穩定,提出模糊推論積分型滑動模式之小腦
模型控制器(Fuzzy based Integral Sliding Mode Using Cerebellar Model
Articulation Controller,簡稱CFISMC)。滑動模式控制器具有系統參數變動
及雜訊干擾之不敏性,擁有強健性控制,積分器可有效消除系統穩態誤
差,並能夠提升系統控制穩定度,由模糊控制加入可簡化設計系統的複雜
性,控制法則簡單,易於實現並利用狀態點與滑動面之距離,進行適應性
控制增益之動態調整,使狀態點能快速到達滑動面並降低超越量,以提昇
系統之暫態響應品質,並引用小腦模型控制器加入,可輔助積分型滑動模
式控制器之系統架構,小腦模型控制器(CMAC),是應用查表方式之類神
經網路, 對非線性系統具備優越之快速學習收斂速度及類化
(generalization)能力,以補償積分型滑動模式控制器,因系統控制器設
計之限制而使系統控制效能品質不理想。此外亦希望經由小腦模型輔助控
制器的加入,能夠縮短系統上昇時間並簡化系統設計之目的,以減少暫態
響應時間並使系統快速到達穩定狀態。最後並將本研究之架構模擬於球體
平衡桿系統(Ball-on-Beam Balancing) 控制與雙倒單擺系統(Tandem
Pendulum)控制,以驗證其控制效能。
The sliding mode causes high speed chattering phenomenon in the
traditional Variable Structure Control (VSC) , and produces unwanted high
frequency in the system and even creates instability. This paper proposes
Fuzzy based Integral Sliding Mode Using Cerebellar Model Articulation
Controller, abbreviated as FCISMC. The integral controller effectively clears
up errors in the system stability, and the sliding mode controller has invariable
property with variation in the system parameters and interfering surface noise,
thus excelling in robust control. By adding the fuzzy logic controller, it
simplifies system difficulty in design. Fuzzy logic control rules are simple to
make and easy to implement. We can regulate the control gain by the distance
between state point and sliding surface. In this way, the state point can reach
the sliding surface rapidly and reduce the overshoot. The transient response of
the system will then be improved. By adding the Cerebellar model articulation
controller, it aids the system structure of the integral sliding mode controller.
Also, with the surpassing nonlinear learning ability of Cerebellar Model
Articulation Controller (CMAC) and its sample generalization ability, it is
hoped to compensate the poor control efficiency caused by design limitation in
the conventional ISMC. Besides, adding the CMAC shortens the design
procedure and reduces the difficulties in design. This cuts down the
temporary state respond time and enables the system to reach its stable state.
Finally, one experiment for the integral sliding mode with CMAC is simulated
with the Ball-on-Beam Balancing control system and the Tandem Pendulum
control system to demonstrate the improvement in its control performance.
[1] S.C.Lin and C.C.Kung,”The fuzzy sliding mode controller”,proceeding of 15th
National Symposium on Automatic Control,R.O.C.,pp.359-366,1991。
[2] S.C.Lin and C.C.Kung” design of sliding mode controller using fuzzy logic”Taung
journal ,vol.21,pp.55-63,1992。
[3] Albus, J.S. Data Storage in the Cerebellar Model Articulation Controller (CMAC).
Journal of Dynamic Systems, Measurement, and Controller, Transactions of ASME,
[4] Albus, J.S. A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC). Journal of Dynamic Systems, Measurement, and
Control, Transactions of ASME, 220-227,1975.
[5] Miller, T. W., Glanz, F. H. Kraft & L. G. . Application of a General Learning
Algorithm to the Control of Robotic Manipulators. The International Journal of
Robotic Research, 6, 2, 84-98,1987.
[6] Shelton R. O. & Peterson & J. K. . Controlling a Truck with an Adaptive Critic CMAC
Design. Simulation, 58, 5, 319-326,1992
[7] Fu-Chuang Chen and Chih-Horng Chang .〝Practical Stability Issues in CMAC
Neural Network Control Systems”Proceedingsof the American Control Conference
Baltimore,Maryland,June, 1994。
[8] Fu-Chuang Chen & Chih-Horng Chang .〝Practical Stability Issues in CMAC Neural
Network Control Systems 〞IEEE TRANSACTIONS ON CONTROL SYSTEMS
ECHNOLOGY ECHNOLOGY,VOL.4,NO.1,JANUARY 1996.
[9] Jar-Shone Ker, Yau-Hwang Kuo, Rong-Chang Wen & Bin-Da Liu . Hardware
Implementation of CMAC Neural Network with Reduced Storage Requirement.
IEEE,Transaction,on,Neural,Networks,8,6,1545-1556,1997.
[10] Chih-Ming Chen, Hahn-Ming Lee & Yu-Rong Hsieh. A New Learning Model of
Hierarchical CMAC Neural Networks. Proceedings of Fourth National Conference on
Artificial Intelligence and Applications,pp.17-22,1999.
[11] Chern and Y.-C.Wu,”Design of integral variable structure controler and application to
98
electrohydraulic velocity servosystems”,IEE Proceedings-D,Vol.138,No.5,pp.439-
444,1991。
[12] Jinn-der Wang, Tian-Lai Lee,and Yau-Tarng Juang Juang,”New Methods to Design an
Integral Variable Structure Controller”,IEEE Transactions on automatic
control,Vol.41,No.1,1996。
[13] Chen,Zhime & Zhang,jinggang AND Zeng,jianchao,” Integral sliding mode variable
structure control based on fuzzy ”, Proceedings of the 3rd World Congress on
Intelligent Control and Automation,Vol.4, pp.3009 –3012,2000。
[14] Pan, Shuwen ., Su, Hongye ., Hu, Xiehe and Chu, Jian ,”Variable structure control
theory and application: a survey ”,Proceedings of the 3rd World Congress on
Intelligent Control and Automation, Vol.4, pp. 2977 -2981,2000。
[15] Kao-Shing Hwang and Ching-Shun Lin ,“A self-organizing fuzzy CMAC for sliding
mode control “,IEEE International Workshop on Variable Structure Systems ,pp.133 –
138,1996。
[16] Chung-Chun Kung; Wei-Chi Lai ,“GA-based design of a region-wise fuzzy sliding
mode controller”, IEEE Canadian Conference on Electrical and Computer Engineering,
pp. 971 –976 , vol.2 ,1999。
[17] Zhuang Kaiyu; Su Hongye; Chu Jian; Zhang Keqin “Globally stable robust tracking of
uncertain systems via fuzzy integral sliding mode control “Proceedings of the 3rd
World Congress on Intelligent Control and Automation, pp. 1827 -1831, vol.3 ,
2000。
[18] Boban Veselic,Goran Golo, Cedomir Milosavljevic, ”Synchronization of two-phase
harmonic oscillator using sliding mode vector control”, Proceedings of the 2nd
International Conference Control of Oscillations and Chaos, Vol. 3 , pp. 471 –
474,2000。
[19] U.Itkis,”Control systems of variable structure”,1976。
[20] W.J.Wang and J.L.Lee, ”Hitting time reduction and chattering attenuation in variable
structure systems ”Journal of Control Systems and Technology,Vol.1,NO.1,pp.19-
25,1993.。
99
[21] D.Q.Zhang and S.K.Panda,”Chattering-free and fast-response sliding mode
control”,IEE Proc.-control Theory Apppl.Vol.146,No.2,March 1999
[22] Giorgio Bartolini, Antonella Ferrara, Elio Usai, and Vadim I. Utkin,” On multi-input
chattering-free second-order sliding mode control”,IEEE Transactions on Automatic
Control,Vol.45,NO.9,pp.1711–1717,September 2000。
[23] Kamol Limtanyakul ,”Variable structure control with time-varying boundary layer for
robot manipulator”, Proceedings of the 2000 IEEE International Conference on
Control Applications, pp. 720 –723,2000。
[24] J.Y.Hung,W.Gao and J.C.Hung,” Variable Structure Control:A Surver,”IEEE Trans.
On Industrial Electronics,Vol.40,No.1,pp.2-22,1993。
[25] Fengxi Zhou and D.Grant Fisher.” Continuous sliding mode control” ,INT,J.
Control.vol.55.No.2,pp.313-327,1992。
[26] Christopher Edwards, Ashu Akoachere and Sarah K.Spurgeon,”Sliding-mode output
feedback controller design using linear matrix inequalities”, IEEE Transactions on
Automatic Control,Vol.46 ,NO.1, pp 115 –119, January 2001
中文部分
[27] 蘇崇彥,”無顫動積分式可變結構系統之設計”,國立師範大學工業教育研究所碩
士論文,1994。
[28] 黃昭諺,”間時滑動模式之可微分小腦模型控制器設計”,國立師範大學工業教育
研究所碩士論文,2001。
[29] 高為炳,”可變結構控制理論基礎”,中國科學技術出版社,1990。