簡易檢索 / 詳目顯示

研究生: 葉修豪
Yeh, Hsiu-Hao
論文名稱: 利用地球化學參數瞭解有勝溪斷流河段之水源及其交互作用
Using geochemical signatures to identify interactions among water sources in the fragmented reach of the Yousheng Creek
指導教授: 李宗祐
Lee, Tsung-Yu
口試委員: 黃誌川
Huang, Jr-Chuan
邱永嘉
Chiu, Yung-Chia
許少瑜
Hsu, Shao-Yiu
李宗祐
Lee, Tsung-Yu
口試日期: 2023/07/05
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 斷流伏流水層端源混合分析法地表水與地下水交互作用
英文關鍵詞: flow disruption, hyporheic zone, end-member mixing analysis, surface water-groundwater interaction
DOI URL: http://doi.org/10.6345/NTNU202300930
論文種類: 學術論文
相關次數: 點閱:139下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氣候變遷的影響下,有許多常流河開始轉變為間歇式流動,然而斷流河段中伏流水層的流動情形仍缺乏研究。有勝溪近年來頻繁發生斷流雖嚴重影響國寶魚櫻花鉤吻鮭之生存,卻提供良好的研究場域。本研究於有勝溪斷流河段河道中的7口觀測井,分別在2017年及2022年,採集月尺度的河水及井水資料,量測其pH、導電度、飽和溶氧百分比、氫氧同位素及各類地球化學參數,進而透過端源混合分析法,企圖瞭解斷流河段中地表水及地下水之水源及其交互作用的情形。研究結果顯示,斷流河段的水源主要來自上游的河水及淺層地下水,在乾年(指2022年)乾季(指10到2月)時,上游河水以伏流水的形式在斷流河段的河床中往下游流動,但無偵測到淺層地下水之訊號;乾年溼季(指3到7月)時,則同時有伏流水及淺層地下水之訊號;溼年(指2017年)不論乾季(指1到5月)或溼季(指6到11月),伏流水與淺層地下水則混合而主導了整條斷流河段的水質。本研究除了清楚地描述了有勝溪斷流河段的水文歷程,也可做為國寶魚棲地復育之科學基礎。

    Under the impacts of climate change, many perennial rivers are transitioning into intermittent flow, and the flow dynamics of hyporheic zone in the fragmented river reaches remain poorly studied. Despite the frequent flow fragmentation in the Yousheng Creek, influencing the survival of the Formosan landlocked salmons (Oncorhynchus masou formosanus), it provides an excellent research field. In this study, we collected monthly water samples from seven observation wells located along the fragmented reach of the Yousheng River in 2017 and 2022. Variables such as pH, conductivity, dissolved oxygen saturation, hydrogen and oxygen isotopes, and various geochemical concentrations were measured for both river water and well water. By using end-member mixing analysis, we aimed to understand the sources of surface water and groundwater in the fragmented reach and their interactions. The research findings indicate that the water in the fragmented reach primarily originate from the upstream river water and shallow groundwater. During the dry season (from October to February) of the dry year (referring to 2022), the upstream river water flows as hyporheic flow within the riverbed, while shallow groundwater was not detected. In the wet years (referring to 2017) both dry season (from January to May) and wet season (from June to November), hyporheic flow and shallow groundwater mixed and dominated the water quality of the entire fragmented reach of the Yousheng Creek. This study not only provides a clear description of the hydrological processes in the fragmented reach of the Yousheng Creek but also serves as a scientific basis for the restoration of the Formosan landlocked salmon habitat.

    第一章 緒論 1 第一節 地表水與地下水之交互作用 1 1.1.1地下水與地表水之交換機制 1 1.1.2伏流水層 2 第二節 研究動機 3 第三節 研究目的 4 第二章 文獻回顧 5 第一節 有勝溪水文交換機制之相關研究 5 2.1.1地下水監測搭配鹽水示蹤劑及數值模擬 5 2.1.2利用溫度作為天然示蹤劑 6 第二節 地球化學元素示蹤劑之相關研究 6 2.2.1地殼元素與導電度 6 2.2.2氫氧同位素 8 第三節 端源混合分析法之相關研究 11 第三章 研究區與研究方法 14 第一節 研究區簡介 14 3.1.1有勝溪的地理環境 14 3.1.2觀測井與採樣點位置 15 第二節 研究方法 18 3.2.1現地量測 18 3.2.2實驗室分析 19 3.2.3主成分分析(Principal Component Analysis, PCA)19 3.2.4 端源混合分析法 (End Member Mixing Analysis, EMMA)20 第三節 研究流程 22 第四章 研究結果 23 第一節 水樣分析之結果 23 4.1.1 2017年與2022年間之環境差異 23 4.1.2地球化學參數之結果 25 4.1.2氫氧同位素之結果 29 4.1.3其他參數之結果 32 第二節 斷流河段水源之端源判識 34 第三節 斷流河段水源之季節變化 40 4.3.1 2022年度斷流河段水源貢獻變化 40 4.3.2 2017年度斷流河段水源貢獻變化 50 第五章 討論 61 第一節 有勝溪斷流河段水流路徑概念圖 61 5.1.1地表水與地下水之交互作用對水質之影響 61 5.1.2舊河道對伏流水流動路徑之影響 62 5.1.3 河道變遷對斷流之影響 62 5.1.4 乾年(2022年度)乾季(10~2月及8月)之水流路徑概念模型圖 64 5.1.5 乾年(2022年度)溼季(3~7月)之水流路徑概念模型圖 65 5.1.6 溼年(2017年度)乾季(1~5月)之水流路徑概念模型圖 66 5.1.7 溼年(2017年度)溼季(6~11月)之水流路徑概念模型圖 67 第二節 矽藻對有勝溪斷流河段水質之影響 68 第三節 深層地下水為端源之可能性 81 第六章 結論與建議 84 第一節 主要研究成果 84 第二節 未來研究展望與建議 86 參考文獻 87

    林幸助、于淑芬(2007)。溪流中的藻類。科學發展,417期。
    郭羿里(2023)。利用航空攝影測量探討有勝溪河道地形變化與斷流之研究。國立臺灣師範大學地理學系碩士論文,台北市。
    許貿傑(2019)。結合季長期天氣預報與標準化降雨指標建立有勝溪斷流預警系 統。國立臺灣師範大學地理學系碩士論文,台北市。
    張瑀宬(2021)。以鹽水示蹤劑試驗與數值模式探討高山一級河川之地表水及地下水交互作用—以七家灣溪為例。國立臺灣海洋大學地球科學研究所碩士論文,基隆市。
    黃沂訓(2009)。台灣櫻花鉤吻鮭歷史溪流放流環境評估與放流監測。內政部營建署雪霸國家公園管理處委託辦理計畫。
    潘彥維(2022)。以HFLUX模式模擬亞熱帶山區間歇性河段熱收支情形。國立臺灣師範大學地理學系碩士論文,台北市。
    Ali, G. A., Roy, A. G., Turmel, M. C., & Courchesne, F. (2010). Source-to-stream connectivity assessment through end-member mixing analysis. Journal of Hydrology, 392(3-4), 119-135.
    Anderson, S. P., & Dietrich, W. E. (2001). Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrological Processes, 15(10), 1791-1815.
    Anderson, S. P., Dietrich, W. E., & Brimhall Jr, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114(9), 1143-1158.
    Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC press.
    Babka, B., Futó, I., & Szabó, S. (2011). Clustering oxbow lakes in the Upper-Tisza Region on the basis of stable isotope measurements. Journal of hydrology, 410(1-2), 105-113.
    Barth, J. A., & Veizer, J. (2004). Water mixing in a St. Lawrence river embayment to outline potential sources of pollution. Applied geochemistry, 19(10), 1637-1641.
    Barth, J. A., Stichler, W., Bergemann, M., & Reincke, H. (2006). Can conductivity and stable isotope tracers determine water sources during flooding? An example from the Elbe River in 2002. International Journal of River Basin Management, 4(2), 77-83.
    Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H. G., & Breuer, L. (2011). How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resources Research, 47(8).
    Barthold, F. K., Wu, J., Vaché, K. B., Schneider, K., Frede, H. G., & Breuer, L. (2010). Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer‐based approaches. Hydrological Processes, 24(16), 2313-2327.
    Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual review of Ecology and systematics, 29(1), 59-81.
    Bugna, G. C., Grace, J. M., & Hsieh, Y. P. (2020). Sensitivity of using stable water isotopic tracers to study the hydrology of isolated wetlands in North Florida. Journal of Hydrology, 580, 124321.
    Burns, D. A., McDonnell, J. J., Hooper, R. P., Peters, N. E., Freer, J. E., Kendall, C., & Beven, K. (2001). Quantifying contributions to storm runoff through end‐member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological processes, 15(10), 1903-1924.
    Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M. C., & Chapman, H. (2011). Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1-2), 48-58.
    Cao, Y., Williams, D. D., & Williams, N. E. (1999). Data transformation and standardization in the multivariate analysis of river water quality. Ecological Applications, 9(2), 669-677.
    Cardenas, M. B. (2015). Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 51(5), 3601-3616.
    Chang, C. T., Hamburg, S. P., Hwong, J. L., Lin, N. H., Hsueh, M. L., Chen, M. C., & Lin, T. C. (2013). Impacts of tropical cyclones on hydrochemistry of a subtropical forest. Hydrology and Earth System Sciences, 17(10), 3815-3826.
    Chaves, J., Neill, C., Germer, S., Neto, S. G., Krusche, A., & Elsenbeer, H. (2008). Land management impacts on runoff sources in small Amazon watersheds. Hydrological Processes: An International Journal, 22(12), 1766-1775.
    Cheng, Z., Wang, F., Sun, J., Wang, H., Wang, Y., Guan, X., & Yu, C. (2022). Recession and hysteresis effects of hyporheic zone permeability changes on baseflow in seasonal freeze-thaw mountainous areas. Journal of Hydrology, 610, 127925.
    Chiu, Y. C., Lee, T. Y., Hsu, S. Y., & Liao, L. Y. (2020). The effect of hydrological conditions and bioactivities on the spatial and temporal variations of streambed hydraulic characteristics at the subtropical alpine catchment. Journal of Hydrology, 584, 124665.
    Christophersen, N., & Hooper, R. P. (1992). Multivariate analysis of stream water chemical data: The use of principal components analysis for the end‐member mixing problem. Water Resources Research, 28(1), 99-107.
    Christophersen, N., Neal, C., Hooper, R. P., Vogt, R. D., & Andersen, S. (1990). Modelling streamwater chemistry as a mixture of soilwater end-members—a step towards second-generation acidification models. Journal of Hydrology, 116(1-4), 307-320.
    Clark, I.D., Fritz, P., 1997. Tracing the hydrological cycle. In: Environmental Isotopes in Hydrogeology. CRC Press, Florida, pp. 35–60.
    Cowie, R. M., Knowles, J. F., Dailey, K. R., Williams, M. W., Mills, T. J., & Molotch, N. P. (2017). Sources of streamflow along a headwater catchment elevational gradient. Journal of Hydrology, 549, 163-178.
    Cox, M. H., Su, G. W., & Constantz, J. (2007). Heat, chloride, and specific conductance as ground water tracers near streams. Groundwater, 45(2), 187-195.
    Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.
    Criss, R.E., (1999). Isotope hydrology. In: Principles of Stable Isotope Distribution.Oxford University Press, New York, pp. 89–136
    Dafny, E., Burg, A., & Gvirtzman, H. (2006). Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights, Israel case study. Journal of Hydrology, 330(3-4), 506-524.
    Dansgaard, W. (1964). Stable isotopes in precipitation. tellus, 16(4), 436-468.
    Davis, J. C. (2002). Statistics and Data Analysis in Geology, second ed. New York: John Wiley & Sons Inc.
    Fritz, P. (1981). River waters. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, Tech. Rep. Ser, 210, 177-201.
    Gat, J. R., & Gonfiantini, R. (1981). Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical reports series No. 210.
    Guo, F., & Jiang, G. (2020). Hydro-ecological processes of hyporheic zone in a karst spring-fed pool: Effects of groundwater decline and river backflow. Journal of Hydrology, 587, 124987.
    Hoagland, B., Russo, T. A., Gu, X., Hill, L., Kaye, J., Forsythe, B., & Brantley, S. L. (2017). Hyporheic zone influences on concentration‐discharge relationships in a headwater sandstone stream. Water Resources Research, 53(6), 4643-4667.
    Hooper, R. P. (2003). Diagnostic tools for mixing models of stream water chemistry. Water Resources Research, 39(3).
    Hooper, R. P., Christophersen, N., & Peters, N. E. (1990). Modelling streamwater chemistry as a mixture of soilwater end-members—An application to the Panola Mountain catchment, Georgia, USA. Journal of Hydrology, 116(1-4), 321-343.
    Inamdar S et al (2013). Temporal variation in end-member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment. Water Resour Res 49:1828–1844
    James, A. L., & Roulet, N. T. (2006). Investigating the applicability of end‐member mixing analysis (EMMA) across scale: A study of eight small, nested catchments in a temperate forested watershed. Water Resources Research, 42(8).
    Katsuyama, M., Ohte, N., & Kobashi, S. (2001). A three‐component end‐member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrological Processes, 15(2), 249-260.
    Larned, S. T., Datry, T., Arscott, D. B., & Tockner, K. (2010). Emerging concepts in temporary‐river ecology. Freshwater Biology, 55(4), 717-738.
    Lee, T. Y., Hong, N. M., Shih, Y. T., Huang, J. C., & Kao, S. J. (2017). The sources of streamwater to small mountainous rivers in Taiwan during typhoon and non-typhoon seasons. Environmental Science and Pollution Research, 24, 26940-26957.
    Lewin, J. C. (1961). The dissolution of silica from diatom walls. Geochimica et Cosmochimica Acta, 21(3-4), 182-198.
    Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the total environment, 313(1-3), 77-89.
    Liu, Y., & Yamanaka, T. (2012). Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. Journal of Hydrology, 464, 116-126.
    Lorette, G., Sebilo, M., Buquet, D., Lastennet, R., Denis, A., Peyraube, N., ... & Studer, J. C. (2022). Tracing sources and fate of nitrate in multilayered karstic hydrogeological catchments using natural stable isotopic composition (δ15N-NO3− and δ18O-NO3−). Application to the Toulon karst system (Dordogne, France). Journal of Hydrology, 610, 127972.
    Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., & Gupta, S. K. (2011). Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrological Processes, 25(10), 1521-1530.
    McCarthy, K. A., McFarland, W. D., Wilkinson, J. M., & White, L. D. (1992). The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology, 135(1-4), 1-12.
    Meghdadi, A., & Javar, N. (2018). Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model. Environmental pollution, 235, 207-222.
    Moore, P. J., Martin, J. B., & Screaton, E. J. (2009). Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer. Journal of Hydrology, 376(3-4), 443-455.
    Moravec, B. G., Keller, C. K., Smith, J. L., Allen‐King, R. M., Goodwin, A. J., Fairley, J. P., & Larson, P. B. (2010). Oxygen‐18 dynamics in precipitation and streamflow in a semi‐arid agricultural watershed, Eastern Washington, USA. Hydrological Processes: An International Journal, 24(4), 446-460.
    Mulholland, P. J., & Hill, W. R. (1997). Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: Separating catchment flow path and in‐stream effects. Water resources research, 33(6), 1297-1306.
    Muñoz‐Villers, L. E., & McDonnell, J. J. (2012). Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Research, 48(9).
    Peng, T. R., Huang, C. C., Wang, C. H., Liu, T. K., Lu, W. C., & Chen, K. Y. (2012b). Using oxygen, hydrogen, and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. Journal of Hydrology, 450, 105-116.
    Peng, T. R., Lu, W. C., Chen, K. Y., Zhan, W. J., & Liu, T. K. (2014). Groundwater-recharge connectivity between a hills-and-plains’ area of western Taiwan using water isotopes and electrical conductivity. Journal of Hydrology, 517, 226-235.
    Peng, T. R., Wang, C. H., Hsu, S. M., Chen, N. C., Su, T. W., & Lee, J. F. (2012a). Use of stable water isotopes to assess sources and influences of slope groundwater on slope failure. Hydrological Processes, 26(3), 345-355.
    Peng, T. R., Wang, C. H., Hsu, S. M., Wang, G. S., Su, T. W., & Lee, J. F. (2010a). Identification of groundwater sources of a local-scale creep slope: Using environmental stable isotopes as tracers. Journal of Hydrology, 381(1-2), 151-157.
    Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, C. T. A., & Hwong, J. L. (2010b). Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3-4), 357-366.
    Peng, T. R., Wang, C. H., Lai, T. C., & Ho, F. S. K. (2007). Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan. Environmental Geology, 52, 1617-1629.
    Quenet, M., Celle-Jeanton, H., Voldoire, O., Albaric, J., Huneau, F., Peiry, J. L., ... & Beauger, A. (2019). Coupling hydrodynamic, geochemical and isotopic approaches to evaluate oxbow connection degree to the main stream and to adjunct alluvial aquifer. Journal of Hydrology, 577, 123936.
    Rozanski, K. (1985). Deuterium and oxygen-18 in European groundwaters—links to atmospheric circulation in the past. Chemical Geology: Isotope Geoscience section, 52(3-4), 349-363.
    Saegusa, R., Sakano, H., & Hashimoto, S. (2004). Nonlinear principal component analysis to preserve the order of principal components. Neurocomputing, 61, 57-70.
    Tsai, C. J., Lin, T. C., Hwong, J. L., Lin, N. H., Wang, C. P., & Hamburg, S. (2009). Typhoon impacts on stream water chemistry in a plantation and an adjacent natural forest in central Taiwan. Journal of hydrology, 378(3-4), 290-298.
    Wei, K., Zeng, X., Wang, C., Peng, Z., Wang, J., Zhou, F., & Chen, F. (2021). Phosphate distribution and sources in the waters of Huangbai River, China: using oxygen isotope composition of phosphate as a tracer. Environmental Science and Pollution Research, 28, 29732-29741.
    Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1999). Ground water and surface water. A single resource. USGS Circular, 1139.
    Woocay, A., & Walton, J. (2008). Multivariate analyses of water chemistry: surface and ground water interactions. Groundwater, 46(3), 437-449.
    Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R, (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle, IAEA, Tech Rep Ser 210:103–142.

    下載圖示
    QR CODE