簡易檢索 / 詳目顯示

研究生: 陳泓宇
CHEN,Hong-Yu
論文名稱: 鐵電氧化鉿鋯之記憶體及類神經元件應用
Ferroelectric HfZrO2 Memory and Neuromorphic Device Applications
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 鐵電1T1C讀取耐久度數據保持類神經應用
DOI URL: http://doi.org/10.6345/NTNU201900963
論文種類: 學術論文
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來發現摻雜HfO2在正交晶相中具有鐵電性,鐵電薄膜的殘餘極化和矯頑場可以通過摻雜濃度,退火條件進行調整。重要的是,HfO2與CMOS製程相容,用於記憶體上可以提供隨機存取、高速、低功率、高密度和非揮發性的理想記憶體條件。
    本論文中展示了5nm厚度的Hf0.5Zr0.5O2 (HZO)閘極堆疊鐵電電晶體之記憶體元件應用,後閘極製程(gate-last process)使鐵電性隨著結晶溫度的逐漸轉變。元件具備優異的寫入/抹除(P/E)數據保持(retention),當寫入/抹除電壓為4.8V時,外插到10年之電流開關比~2x104,記憶窗0.67 V。本篇論文第一部分為探討1T1C鐵電電容二極體的讀取耐久性(Endurance)以及高數據保持力(Retention),第二部分為5奈米厚度的Hf0.5Zr0.5O2 (HZO)閘極堆疊鐵電電晶體之記憶體元件應用,以及探討不同介面層(Interfacial layer)對元件的影響,最後由於近年人工智慧的迅速崛起,我們利用具有鐵電性的元件來進行類神經應用,驗證了超薄鐵電層可做為新興記憶體及物聯網架構的真實性。

    In recent years, it has been found that doped HfO2 has ferroelectricity in the orthorhombic phase. Additionally, the remanent polarization and coercive field of the ferroelectric thin film can be adjusted by doping concentration and annealing temperature. Most importantly, HfO2 is fully compatible with current CMOS processes and it also has many advantages for memory application, such as random access, high speed, low power, high density, and non-volatility.
    The feature of this work is an unaffected coercive-field (~1 MV/cm) with scaling FE-HZO down to 5-nm-thick, which is beneficial for reducing the operation voltage. FeFETs with 5-nm-thick Hf0.5Zr0.5O2 (HZO) have been demonstrated in memory operations. Gradual transition of the ferroelectricity with an increasing crystallization temperature for the gate-last process was presented. The excellent program/erase (P/E) data retention are the ~2x104 ON/OFF ratio and 0.67 V extrapolated to 10 years with VP/E=4.8 V. Comparable performance with previous works on high data retention and endurance with low voltage for read are achieved. The ultrathin ferroelectric layer proposes a realistic emerging memory for 1T architecture.

    Publication I 中文摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 第二章 鐵電鉿基氧化物電容二極體 5 2-1 簡介 5 2-2電容二極體結構 8 2-3 快速熱退火處理 8 2-4 量測機台介紹 9 2-4-1 遲滯曲線量測(Hysteresis Loop) 9 2-4-2 電容二極體Recovery 11 2-4-3 電容二極體Reliability之Endurance量測 12 2-4-4 PUND量測方式 17 2-4-5 電容二極體Retention量測 19 2-5 電容二極體量測結果 26 2-5-1 電容二極體遲滯曲線Hysteresis Loop 26 2-5-2 電容二極體之Endurance結果 27 2-5-2 電容二極體之Retention結果 30 2-6 電容二極體結果討論與分析 31 第三章 鉿基氧化物鐵電電晶體 32 3-1 簡介 32 3-2 元件製作 33 3-3 FeFET Endurance量測 35 3-3-1 FeFET Endurance量測結果 35 3-4 FeFET Retention量測 39 3-4-1 FeFET Retention量測結果 39 3-5 5nmFeFET 結果討論與分析 41 3-6 Different IL FeFET 42 3-7 兩款Endurance比較結果 43 3-8 兩款Retention比較結果 47 3-9 兩款Endurance升溫85度結果 49 3-1 不同IL FET結果與討論 51 第四章 鐵電HZO電晶體深度學習 54 4-1 何謂深度學習 54 4-2 文獻回顧 56 4-3 FeFET深度學習量測結果 58 4-4 FeFET深度學習結果與討論 62 第五章 總結與未來工作 64 參考文獻 66

    [1] T. Böscke, J. Heitmann, U. Schroder, “Integrated Circuit with Dielectric Layer, ” U.S. Patent 7 709 359 B2, May 4, 2010.
    [2] O. Auciello, J. F. Scott and R. Ramesh, “The Physics Of Ferroelectric Memories, ” Physics Today, pp. 22-27, 1998.
    [3] https://www.ndeed.org/EducationResources/CommunityCollege/MagParticle/Physics/HysteresisLoop.php(2019/06/28)
    [4] Premier II Ferroelectric Test System Brochure
    [5] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick, “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG,” in VLSI Technology Symp., 2012, pp. 25-26.
    [6] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 Thin Films for Nonvolatile Memory Applications, ’’ Applied Physics Letters, vol. 99, iss. 11, pp. 112901, 2011.
    [7] S. Salahuddin, and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, ” Nano Letters, vol. 8, no. 2, pp. 405-410, 2008.
    [8] M. H. Lee, Y. T. Wei, J. C. Lin, C. W. Chen, W. H. Tu, M. Tang, “Ferroelectric Gate Tunnel Field-Effect Transistors with Low-Power Steep Turn-On, ” AIP Advances, vol. 4, no. 10, pp. 107117, 2014.
    [9] T. P. C. Juan, C. Y. Chang, and J. Y. M. Lee, “A New Metal–Ferroelectric (PbZr0.53Ti0.47O3)–Insulator (Dy2O3)–Semiconductor (MFIS) FET for Nonvolatile Memory Applications, ” IEEE Electron Device Letter, vol. 27, no. 4, pp. 217-220, 2006.
    [10] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide: CMOS Compatible Ferroelectric Field Effect Transistors, ” in IEDM, 2011, pp. 547-550.
    [11] Qimonda AG, INTEGRATED CIRCUIT WITH DIELECTRIC LAYER, U.S. Patent No. 14, 7709359B2 (4 May, 2010)
    [12] J. Müller, T. S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlösser, R. Boschke, R. Bentum, U. Schröder, T. Mikolajick, “Ferroelectric Hafnium Oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories, ” in IEDM Tech. Dig., 2013, pp. 280-283.
    [13] M. H. Lee, Y. T. Wei, C. Liu, J. J. Huang, M. Tang, Y. L. Chueh, K. Y. Chu, M. J. Chen, H. Y. Lee, Y. S. Chen, L. H. Lee, and M. J. Tsai, “Ferroelectricity of HfZrO2 in Energy Landscape with Surface Potential Gain for Low-Power Steep-Slope Transistors, ” IEEE J. of the Electron Device Society, vol. 3, No. 4, pp. 377-381, 2015.
    [14] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, M. J. Chen, H. Y. Lee, Y. S. Chen, L. H. Lee, and M. J. Tsai, “Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics, ” IEEE Electron Device Letter, vol. 36, no. 4, pp. 294-296, 2015.
    [15] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, “Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films, ” Nano Energy, vol. 12, pp. 131-140, 2015.
    [16] R. Eskandari, X. Zhang, and L. M. Malkinski, “Polarization-dependent photovoltaic effect in ferroelectric-semiconductor system, ” Appl. Phys. Lett., vol. 110, pp. 121105, 2017.
    [17] M. H. Lee, P. G. Chen, C. Liu, K. Y. Chu, C. C. Cheng, M. J. Xie, S. N. Liu, J. W. Lee, S. J. Huang, M. H. Liao, M. Tang, K. S. Li, and M. C. Chen, “Prospects for Ferroelectric HfZrOx FETs with Experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, Switch-OFF<0.2V, and hysteresis-free strategies, ” in IEDM Tech. Dig., 2015, pp. 616-619
    [18] N. Gong, and T. P. Ma, “A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation, ” IEEE Electron Device Letter, vol. 39, no. 1, pp. 15-18, 2018.
    [19] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, “Principles of Neural Science, ” 4th ed. New York, NY, USA: McGraw-Hill, 2000.
    [20] H. Markram, “The Blue Brain Project,” Nature Rev. Neurosci., vol. 7, pp. 153-160, 2006.
    [21] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Nat. Acad. Sci. United States Amer., vol. 79, no. 8, pp. 2554-2558, 1982
    [22] W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks., vol. 10, no. 9, pp. 1659-1671, 1997.
    [23] M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric FET Analog Synapse for Acceleration of Deep Neural Network Training, ” in IEDM Tech., 2017, pp. 140-142.

    無法下載圖示 本全文未授權公開
    QR CODE