簡易檢索 / 詳目顯示

研究生: 林建佑
Lin, Chien-Yu
論文名稱: 實施科技輔助合作問題解決教學於STEM課程中對學習成效、合作問題解決能力及實作技能影響之研究
The Effectiveness of implementation of technology-assisted collaborative problem-solving instruction in STEM curriculum on STEM performance, collaborative problem-solving skills and practical skill
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 博士
Doctor
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 189
中文關鍵詞: 合作問題解決能力STEM整合式教學實作技能
英文關鍵詞: collaborative problem-solving, STEM, practical skill
論文種類: 學術論文
相關次數: 點閱:273下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • STEM整合式教學目的在培養一般學生在科學、科技、工程及數學等領域的綜合素養,提升學生各項能力,而中學階段的生活科技準工程課程強調科學理論、數學計算、工程素養與科技實作整合,與STEM的理念相符。合作問題解決能力對於各個教育階層與職場而言,皆是關鍵且重要的能力,且隨著網路科技的不斷發達,透過網路進行合作問題解決活動,更是當前所需的重要能力。因此本研究建置合作問解決教學系統,以6E模式發展國中階段生活科技電動車STEM整合式教學活動,並輔以合作問題解決教學活動及系統進行教學,透過教學實驗深入探討教學模式對學生的STEM學習成效、合作問題解決能力及實作技能之效果。研究貢獻包括產出適用於準工程教學之合作問題解決教學系統與課程、合作問題解決能力評量系統及實作技能評量工具並運用於教學環境中;教學實驗結果亦顯示實施科技輔助合作問題解決的STEM整合式教學之有助於提升學習成效、合作問題解決能力及實作技能。

    The purpose of STEM (Science, Technology, Engineering, Mathematics) instruction is to bring up students in science, technology, engineering, engineering and mathematics literacy, and enhance learning abilities. Collaborative problem-solving skills is a very critical and important capability to all education level or workplace. With the continuous development of Internet technology, collaborative problem-solving skills through the Internet will be one of the most important ability for the future world. This study follow 6E model to development a electronic car curriculum with STEM concept, and development learning activity and learning system with collaborative problem-solving strategy. An experiment was conduct to evaluate the STEM learning performance, collaborative problem-solving skills and the practical skill. The research contributions of this study include developing a collaborative problem-solving instructional system with pre-engineering curriculums, collaborative problem-solving evaluating system, and evaluating rubrics for practical skill. The research results showed that technology-assisted collaborative problem-solving instruction in STEM curriculum could effectively enhance STEM performance, collaborative problem-solving skills and practical skill.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 8 第三節 研究範圍與限制 9 第四節 研究流程 11 第五節 名詞釋義 12 第二章 文獻探討 15 第一節 STEM整合式教學 15 第二節 合作問題解決能力 25 第三節 實作技能 39 第四節 文獻探討評析 48 第三章 研究設計與實施 51 第一節 研究架構 51 第二節 研究對象 53 第三節 研究方法 55 第四節 研究工具與分析方法 65 第四章 研究結果與討論 81 第一節 不同教學模式對STEM學習成效之影響 81 第二節 不同教學模式對合作問題解決能力之影響 88 第三節 不同教學模式對實作技能之影響 125 第五章 結論與建議 135 第一節 結論 135 第二節 研究建議 142 參考文獻 149 附 錄 165

    方崇雄(1995)。國民中學生活科技教育問題解決模式課程設計與實驗研究。臺北市:中華民國工藝教育學會。
    王世英、張鈿富、吳慧子、吳舒靜(2009)。歐美澳「公民關鍵能力」發展之研究。臺北市:國立教育資料館。
    王鼎銘(1999)。科技發展與科技教育學習經驗。生活科技教育,32(11),2-9。
    朱益賢(2008)。從社會環境成份探討學生的實作技能與科技創造力—透過科技競賽策略。行政院國家科學委員會專題研究成果報告(NSC 95-2511-S-003-021-MY3),未出版。
    吳清山、林天祐(1997)。實作評量、卷宗評量、真實評量。教育資料與研究,15,68-70。
    呂金燮(1999)。實作評量-理論。教育測驗與評量:教室學習觀點。台北:五南。
    李坤崇(2006)。教學評量。台北:心理。
    李堅萍(2006)。培育科技創造力應重視實作技能的教學與自我效能的激發。生活科技教育月刊,39(8),21-28。
    李博宏(2006)。STEM 教育中,T&E(科技-工程)課程發展近況。生活科技教育月刊, 39(7), 108-109。
    周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊,41(7),51-83。
    林坤誼(2000)。以整合MST取向建構科技教育學習網站之初探。生活科技教育月刊, 33(2),10-15。
    林坤誼(2014)。情境式智慧學習系統對培育國中生的網路合作STEM問題解決能力之研究。科技部專題研究成果報告。台北市:國立臺灣師範大學。
    林坤誼、游光昭、洪國峰(2011) 。操作技能對思考與實作表現影響之研究。課程與教學,14(4),161-185。
    林孟逸(2008)。國小創造性問題解決教學應用-以吸管滑翔機爲例。生活科技教育,41(2),57-79。
    侯世光、黃進和(2004)。 高中學生工程與科技職涯試探之準工程教學活動設計。 論文發表於2004國際科技教育課程改革與發展研討會,高雄市。
    洪文東(2003)。創造性問題解決化學單元教學活動設計與評估。科學教育學刊,11(4),407-430。
    洪文東(2006a)。以創造性問題解決教學活動設計提升學生解決問題能力。科學教育研究與發展季刊,43,26-42。
    洪文東(2006b)。國小創造性問題解決教學模組設計:以「土地」主題為例。屏東教育大學學報,24(下),471-494。
    洪榮昭(1999)。試析科技創作力。論文發表於國際科技教育整合思考研討會,台東。
    胡博閔(2010)。數位遊戲學習對學童創造力與實作技能影響之研究。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,未出版,臺北市。
    高淑珍(2012)。以知識分享為中介變數探討學習動機、學習互動以及學習平台對協同學習滿意度的影響。商管科技季刊,13(1) ,75-98。
    張永福(2008)。實作評量的特性及其理論基礎。研習資訊,25(3),79-86。
    張玉山、許雅婷(2008)。以問題解決為基礎的科技教學活動設計—以創意機器人研習為例。研習資訊,25(3),61-70。
    張玉成(1993)。思考技巧與教學。台北:心理出版社。
    張春興(1997)。教育心理學。臺北市:東華。
    張春興(1999)。現代心理學。臺北市:東華。
    張鈺新(2010)。建置結合代理人機制之協同問題解決測驗平台之研究-以國中自然與生活科技測驗題目為例。國立臺灣師範大學科技應用與人力資源發展系碩士論文,未出版,臺北市。
    張鈿富、吳慧子、吳舒靜(2010)。歐盟、美、澳「公民關鍵能力」發展及其啟示。教育資料集刊, 48, 273-300。
    張麗麗(2002)。評量改革的應許之地,虛幻或真實?談實作評量之作業與表現規準。教育研究,93,76-86。
    莊謙本(1998)。技能評量的內在與外在因素。教學科技與媒體,42,38-42。
    郭伯臣、廖晨惠(2014)。103-104年教師合作問題解決教學能力提升計畫。教育部委託專案計畫。臺中市:國立台中教育大學。
    郭國禎、駱芳美(2004)。教師與教學評量-形成性評量與總結性評量的整合與運用。教育研究,127,85-92。
    陳明雅(2006)。網路合作式問題解決教學法與服裝設計系學生創造力表現之行動研究。人類發展與家庭學報,8,69-84。
    陳英豪、吳裕益(1992)。測驗與評量。高雄:復文圖書。
    彭森明(1996)。實作評量(Performance Assessment)理論與實際。教育資料與研究,9,44-48。
    臺灣2015 PISA國家研究中心(2013)。關於PISA。2013年12月1日取自http:// pisa2015 .nctu.edu.tw/pisa/index.php/tw/。
    劉曉樺(2011)。教育大未來-我們需要的關鍵能力。臺北市:如果出版社。
    蔡蕙文(2007)。STEM 教學模式應用於國中自然與生活科技領域教學之研究。國立屏東科技大學技術及職業教育研究所碩士論文,未出版,屏東縣。
    蔡濠聰、賴慶三(2010)。問題解決模式融入國小自然與生活科技領域學習活動--以製作「螞蟻雄兵」為例。科學教育月刊,331,35-44。
    蔡麗娟、陳芳慶(2008)。問題解決模式的合作學習--以紙飛機為例。生活科技教育月刊,41(5),61-90。
    盧雪梅(1995)。實作評量的應許、難題和挑戰。教育論壇-實作評量與案卷評量,3-9,台北:國立教育資料館。
    魏秀恬(2001)。國中生活科技 CPS 模式之應用。生活科技教育,34(10),25-32。
    羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM 整合式教學法在國民中學自然與生活科技領域之研究。人文社會科學研究,3(3),42-66。
    羅希哲、蔡慧音、曾國鴻(2011)。高中女生STEM 網路專題式合作學習之研究。高雄師大學報,30,41-61。
    顧炳宏、陳瓊森、溫媺純(2014)。以實作評量方式探討引導發現式教學模式之學習成效-以「聲音」概念為例。科學教育學刊,22(1),57-86。
    Agassi, J. (1997). Thought, Action and Scientific Technology. International Journal of Technology and Design Education, 7(1-2), 33-48. doi: 10.1023/a:1008828130869
    Alvarez, C., Salavati, S., Nussbaum, M., & Milrad, M. (2013). Collboard: Fostering new media literacies in the classroom through collaborative problem solving supported by digital pens and interactive whiteboards. Computers & Education, 63, 368-379. doi: http://dx.doi.org/10.1016/j.compedu.2012.12.019
    Avgitidou, S. (2009). Participation, roles and processes in a collaborative action research project: a reflexive account of the facilitator. Educational Action Research, 17(4), 585-600. doi: 10.1080/ 09650790903309441
    Barak, M., & Mesika, P. (2007). Teaching methods for inventive problem-solving in junior high school. Thinking Skills and Creativity, 2(1), 19-29. doi: http://dx.doi.org/10.1016/j.tsc.2006.10.002
    Barros, B., Verdejo, M. F., Read, T., & Mizoguchi, R. (2002). Applications of a collaborative learning ontology. Paper presented at the Second Mexican International Conference on Artificial Intelligence, Mexico.
    Barry, N. B. (2014). The ITEEA 6E Learning by DeSIGNTM Model. Technology and Engineering Teacher, March, 14-19.
    Barth, C. M., & Funke, J. (2010). Negative affective environments improve complex solving performance. Cognition and Emotion, 24(7), 1259-1268. doi: 10.1080/02699930903223766
    Berry III, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., & Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64(4), 23-30.
    Besemer, S. P. (1998). Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products--Three Novel Chairs. Creativity Research Journal, 11(4), 333-346. doi: 10.1207/ s15326934crj1104_7
    Besemer, S. P., & O'Quin, K. (1999). Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample. Creativity Research Journal, 12(4), 287-296. doi: 10.1207/ s15326934crj1204_6
    Besemer, S. P., & Treffinger, D. J. (1981). Analysis of Creative Products: Review and Synthesis*. The Journal of Creative Behavior, 15(3), 158-178. doi: 10.1002/j.2162-6057.1981.tb00287.x
    Bjorklund, D. F. (1997). The role of immaturity in human development. Psychological Bulletin, 122, 153-169.
    Bjorklund, D. F. (2013). Cognitive development: An overview. In P. D. Zelazo (Ed.), The Oxford Handbook of Developmental Psychology, Vol. 1: Body and Mind(pp.447-476). Oxford, UK: Oxford University Press.
    Blackwell, D., & Henkin, L. (1989). Mathematics: Report of the project 2061 phase I mathematics panel. Washington, D. C.: American Association for the Advancement of Science.
    Bransford, J., & Stein, B. (1986). The IDEAL problem solver. New York: W. H. Freeman.
    Buckley, F. J. (2000). Team teaching: What, why, and how? CA: Sage.
    Burke, B .N. (2014). The ITEEA 6E Learning byDeSIGN™ Model, Maximizing Informed Design and Inquiry in the Integrative STEM Classroom. Technology and Engineering Teacher, 73 (6), 14-19.
    Bybee, R. W., Taylor, J. A., Gardner, A., Scotter, P. V., Powell, J. C., Westbrook, A., & Landers, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Retrieved on August 15, 2014 from http://bscs.org/sites/default/ files/_legacy/BSCS_5E_ Instructional _Model-Executive_Summary_0.pdf
    Care, E., Griffin, P., Scoular, C., Awwal, N., & Zoanetti, N.(2015).Collaborative Problem Solving Tasks. In P. Griffin & E. Care (Eds.), Assessment and Teaching of 21st Century Skills: Methods and Approach (pp. 85-104). USA: Springer.
    Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of Computer Assisted Learning, 30(5), 397-407. doi: 10.1111/jcal.12051
    Chen, F.-C., & Wang, T. (2009). Social conversation and effective discussion in online group learning. Educational Technology Research and Development, 57(5), 587-612. doi: 10.1007/ s11423-009-9121-1
    Chiu, C. H., Chen, H. P., Wei, L. C., & Hu, H, W. (1999). Approaching effective network cooperative learning. Proceedings of International Conference on Mathematics/Science Education and Technology (M/SET 99 Proceedings). San Antonio, Texas, USA.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
    Curtis, D. D. & Lawson, M. J. (2001). Exploring collaborative online learning. Journal of Asynchronous Learning Network, 5(1), 21-34.
    Darling-Hammond, L. (2011). Policy Frameworks for New Assessments. In P. Griffin, B. McGaw & E. Care (Eds.), Assessment and Teaching of 21st Century Skills (pp. 301-340). Heidelberg: Springer.
    Daugherty, M. & Wicklein, R. (1993). Mathematics, science, and technology teacher's perceptions of technology education. Journal of Technology Education, 4(2), 28-43.
    Daugherty, M. (2001). Problem solving in appropriate technology. In R. C. Wicklein (Ed.), Appropriate technology for sustainable living: ITEA 50th yearbook (pp. 170-201). Reston, VA: International Technology Education Association.
    Davis, A., Fidler, D., & Gorbis, M. (2011). Future Work Skills 2020. Institute for the Future for University of Phoenix Research Institute. Retrieved on June 10, 2014 from http://www.iftf.org/futurework skills2020
    Dewey, J. (1910). How we think. Boston, MA: Health.
    Dillenbourg, P. (1999). What do you mean by ‘collaborative learning? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and Computational Approaches (pp.1–19). Oxford: Elsevier
    Ejiwale, J. A. (2012). Facilitating Teaching and Learning Across STEM Fields. Journal of STEM Education: Innovations & Research, 13(3), 87-94.
    Engelmann, T., & Hesse, F. (2010). How digital concept maps about the collaborators’ knowledge and information influence computer- supported collaborative problem solving. International Journal of Computer-Supported Collaborative Learning, 5(3), 299-319. doi: 10. 1007/s11412-010-9089-1
    Fiore, S. M., Rosen, M. A., Smith-Jentsch, K. A., Salas, E., Letsky, M., & Warner, N. (2010). Toward an understanding of macrocognition in teams: predicting processes in complex collaborative contexts. Hum Factors, 52(2), 203-224.
    Fischer, K.W. (1980). A theory of cognitive development: The control and construction of hierarchical skills. Psychological Review, 87(2), 477-531.
    Flavell, J.H., Botkin, P., Fry, C., Wright, J., & Jarvis, D. (1968). The development of role-taking and communication skills in children. New York: Wiley.
    Funke, J. (2010). Complex problem solving: A case for complex cognition? Cognitive Processes, 11, 133- 142.
    Glaser, R., Linn, R., & Bohrnstedt, G. (1997). Assessment in Transition: Monitoring the Nation's Educational Progress. National Academy of Education.
    Greene, R. W. (2011). Collaborative problem solving can transform school discipline. Phi Delta Kappan, 93(2), 25-28.
    Greenstein, L. (2012). Assessing 21st Century Skills: A Guide to Evaluating Mastery and Authentic Learning. USA: Corwin.
    Gregg, D. G. (2010). Designing for collective intelligence. Commun. ACM, 53(4), 134-138. doi: 10.1145/1721654.1721691
    Griffin, P.(2014). Performance assessment of higher order thinking. Journal of Applied Measurement, 15(1), 1-16.
    Guilford, J. P., & Hoepfner, R. (1971). The analysis of intelligence. New York: McGraw-Hill.
    Hacker, D. J., Dunlosky, J., & Graesser, A. C. (Eds.). (2009). Handbook of metacognition in education. Mahwah, NJ: Taylor & Francis
    Halpern, D. F. (2003). Thought and Knowledge: An Introduction to Critical Thinking (4th Edition). Mahwah, NJ: Lawrence Erlbaum Associates.
    Hargreaves, A. (1994). Changing teachers, changing times: Teachers’ work and culture in the postmodern age. London: Cassell.
    Hatch, L. (1988). Problem-solving approach. In W. H. Kemp & A. E. Schwaller (Eds.), Instructional Strategies for technology education (pp. 88-89), 37th Yearbook of Council on Technology Education Mission Hills, CA: Glencoe Publishing Company.
    Hayes, J. R. (1989). The complete problem solver.N.J : Lawrence Erlbaulll associatcs.
    Herman, J. L., Aschbacher, P. R., & Winters, L. (1990). Issues in developing alternative assessments. Paper presented at the annual meeting of the California Educational Research Association, Chicago.
    Hesse, F., Care, E, Buder, J, Sassenberg, K, Griffin, P. (2015). A framework for teachable collaborative problem solving skills. In P. Griffin & E. Care (Eds.), Assessment and Teaching of 21st Century Skills: Methods and Approach (pp. 37-56). USA: Springer.
    Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput.-Hum. Interact., 7(2), 174-196. doi: 10.1145/ 353485.353487
    Hong, J.-C., Hwang, M.-Y., & Tai, K.-H. (2013). Applying the BaGua to revitalize the creative problem solving process during a goal oriented contest. Thinking Skills and Creativity, 9, 120-128. doi: http://dx.doi.org/10.1016/j.tsc.2012.09.003
    Hsiao, H. S., Chang, C. S., Lin, C. Y., & Hu, P. M. (2014). Development of children's creativity and manual skills within digital game-based learning environment. Journal of Computer Assisted Learning, 30(4), 377-395. doi: 10.1111/jcal.12057
    Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P. (2011). Socially shared metacognition of dyads of pupils in collaborative mathematical problem-solving processes. Learning and Instruction, 21(3), 379-393. doi: http://dx.doi.org/10.1016/j.learninstruc.2010.05. 002
    Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166-172. doi: http://dx.doi.org/10.1016/j.jbusres. 2014.03.014
    International Technology Education Association. (1996). Technology for all Americans. Virginia: International Technology Education Association.
    Johnson, J. R. (1989). Technology: Report of the Project 2061 Phase I technology panel. Washington, D. C.: American Association for the Advancement of Science.
    Jonassen, D. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63-85. doi: 10.1007/bf02300500
    Jonassen, D., & Kwon, H., II. (2001). Communication patterns in computer mediated versus face-to-face group problem solving. Educational Technology Research and Development, 49(1), 35-51. doi: 10.1007/BF02504505
    Kahney, H. (1986). Problem solving - A cognitive approach. Milton Keynes: Open University Press.
    Kane, M., Crooks, T., & Cohen, A. (1999). Validating Measures of Performance. Educational Measurement: Issues and Practice, 18(2), 5-17. doi: 10.1111/j.1745-3992.1999.tb00010.x
    Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
    Kirschner, F., Paas, F., Kirschner, P. A., & Janssen, J. (2011). Differential effects of problem-solving demands on individual and collaborative learning outcomes. Learning and Instruction, 21(4), 587-599. doi: http://dx.doi.org/10.1016/j.learninstruc.2011.01.001
    Koschmann, T. (1996). Paradigm shifts and instructional technology. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 1-23). Mahwah, NJ: Lawrence Erlbaum.
    Koschmann, T. (2002). Dewey's contribution to the foundations of CSCL research. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community: Proceedings of CSCL 2002 (pp. 17-22). Boulder, CO: Lawrence Erlbaum Associates.
    Lantz Jr., H. B. (2009). Science, technology, engineering, and mathematics (STEM) education what form? What function? March 12, 2014 Retrieved from http://www.currtechintegrations.com/pdf/ STEMEducationArticle.pdf
    Levinson, R., Murphy, P., & McCormigk, R. (1997). Science and Technology Concepts in a Design and Technology Project: a pilot study. Research in Science & Technological Education, 15(2), 235-255. doi: 10.1080/0263514970150208
    Lou, S.-J., Shih, R.-C., Ray Diez, C., & Tseng, K.-H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: an exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21(2), 195-215. doi: 10.1007/ s10798-010-9114-8
    Lu, Y.-L., Lian, I.-B., & Lien, C.-J. (2015). The application of the analytic hierarchy process for evaluating creative products in science class and its modification for educational evaluation. International Journal of Science and Mathematics Education, 13(2), 413-435. doi: 10.1007/s10763-013-9485-x
    Luo, S., Xia, H., Yoshida, T., & Wang, Z. (2009). Toward collective intelligence of online communities: A primitive conceptual model. Journal of Systems Science and Systems Engineering, 18(2), 203-221. doi: 10.1007/s11518-009-5095-0
    Martin-Kniep, G., Feige, D., & Soodak, L. (1995). Curriculum integration: An expanded view of an abused idea. Journal of Curriculum and Supervision, 10(3), 227-249.
    Massachusetts Department of Education (2006). Massachusetts Science and technology / engineering Curriculum framework. Retrieved Dec. 25, 2013, from http://www.doe.mass.edu/ frameworks/scitech/1006. pdf
    Mayer, R. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1-2), 49-63. doi: 10.1023/ A:1003088013286
    Mayer, R. E. (1992). Cognition and instruction: Their historic meeting within educational psychology. Journal of Educational Psychology, 84(4), 405-412. doi: 10.1037/0022-0663.84.4.405
    McCormick, R. (2004). Issues of Learning and Knowledge in Technology Education. International Journal of Technology and Design Education, 14(1), 21-44. doi: 10.1023/B:ITDE.0000007359.81781. 7c
    National Academy of Engineering, NAE. (2001). Technically Speaking— Why all Americans need to know more about technology. Washington, D.C.
    National Research Council (2011). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
    National Research Council (2009). Engineering in K-12 education: understanding the status and improving the prospects. Washington, DC: The National Academies Press.
    New Hampshire Department of Education (2008). Technology/ engineering education curriculum guide. Retrieved Dec. 25, 2013, from http://www.education.nh.gov/instruction/curriculum/tech / documents/ guide.pdf
    Nunnally, J.C. (1978). Psychometric Theory. New York: McGraw-Hill.
    OECD (2013). Draft Collaborative Problem Solving Framework. Retrieved on Dec. 25, 2013 from http://www.oecd.org/pisa/ pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
    O'Neil Jr, H. F. (1999). Perspectives on computer-based performance assessment of problem solving. Computers in Human Behavior, 15(3–4), 255-268. doi: http://dx.doi.org/10.1016/S0747-5632(99) 00022-9
    Ong, F., McLean, J., & Greco, J. (2014). INNOVATE: A Blueprint for Science, Technology, Engineering, and Mathematics in California Public Education. CA: Californians Dedicated to Education Foundation.
    Partnership for 21st Century Skills (2011). P21 Framework Definitions. Retrieved Dec 25, 2013, from http://www.p21.org/documents/ P21_Framework_ Definitions.pdf.
    Pecen, R. R., Humston, J. L., & Yildiz, F. (2012). Promoting STEM to Young Students by Renewable Energy Applications. Journal of STEM Education: Innovations & Research, 13(3), 62-73.
    Perkins, D. N., & Salomon, G. (1994). Transfer of learning. In T. Husen & T. N. Postelwhite (Eds.). International Handbook of Educational Research (Second Edition, Vol. 11; pp. 6452-6457). Oxford, Pergamon Press.
    Piaget, J. (1983). Piaget's theory. In P. Mussen (ed). Handbook of Child Psychology. 4th edition. Vol. 1. New York: Wiley
    Pinelli, T., & Haynie III, W. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
    Polya, G. (1981). Mathematical Discovery. On Understand. Learning and teaching problem solving. Vol. 2. Princeton, N. J. : Princeton University Press.
    Puntambekar, S. (2006). Analyzing collaborative interactions: divergence, shared understanding and construction of knowledge. Computers & Education, 47(3), 332-351. doi: http://dx.doi.org/10.1016/j.compedu. 2004.10.012
    Reigeluth, C.M. (1999). Instructional design theories and models: A new paradigm of instructional theory (Vol. II). Mahwah, NJ: Lawrence Erlbaum Associates.
    Rosen, Y., & Rimor, R. (2012). Teaching and assessing problem solving in online collaborative environment. In R. Hartshorne, T. Heafner, & T. Petty (Eds.), Teacher education programsand online learning tools: Innovations in teacher preparation (pp.82-97). Hershey, PA: Information Science Reference, IGI Global.
    Ruiz-Primo, M. A., Baxter, G. P., & Shavelson, R. J. (1993). On the Stability of Performance Assessments. Journal of Educational Measurement, 30(1), 41-53. doi: 10.1111/j.1745-3984.1993. tb00421.x
    Rummel, N., & Spada, H. (2005). Learning to Collaborate: An Instructional Approach to Promoting Collaborative Problem Solving in Computer-Mediated Settings. Journal of the Learning Sciences, 14(2), 201-241. doi: 10.1207/s15327809jls1402_2
    Runco, M. A., & Acar, S. (2012). Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24(1), 66-75. doi: 10.1080/10400419.2012.652929
    Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. In International Technology and Engineering Educators Association (ITEEA) (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 4-9). Reston, VA: ITEEA.
    Sanders, M. (2009). STEM, STEM Education, STEMmania: A Series of Circumstances Has Once More Created an Opportunity for Technology Educators to Develop and Implement New Integrative Approaches to STEM Education Championed by STEM Education Reform Doctrine over the Past Two Decades. The Technology Teacher, 68(4), 20-26.
    Santangelo, T. (2009). Collaborative Problem Solving Effectively Implemented, but Not Sustained: A Case for Aligning the Sun, the Moon, and the Stars. Exceptional Children, 75(2), 185-209. doi: 10.1177/001440290907500204
    Starkweather, K. N. (2004). Creating Technology Literate Nations Through The Relationship Between Technology and Engineering Education. Paper presented at 2004 Engineering and Technological Educational Literacy Conference in Taiwan.
    Stevenson, J. (2004). Developing Technological Knowledge. International Journal of Technology and Design Education, 14(1), 5-19. doi: 10.1023/B:ITDE.0000007361.62177.07
    Stiggins, R. J. (1987). Design and Development of Performance Assessments. Educational Measurement: Issues and Practice, 6(3), 33-42. doi: 10.1111/j.1745-3992.1987.tb00507.x
    Subramaniam, M. M., Ahn, J., Fleischmann, K. R., & Druin, A. (2012). Reimagining the role of school libraries in STEM Education: creating hybrid spaces for exploration. The Library Quarterly: Information, Community, Policy, 82(2), 161-182.
    Trilling, B., & Fadel, C. (2009). 21st Century Skills: Learning for life in our times. CA: John Wiley & Sons, Inc.
    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
    Wallas, G. (1926). The Art of Thought. Excerpts reprinted in Creativity, P.E. Vernon(Eds.). Middlesex (pp. 91-97), England: Penguin.
    Wiggins, G. (2011). A True Test: Toward More Authentic and Equitable Assessment. Phi Delta Kappan, 92(7), 81-93. doi: 10.1177/0031721 71109200721
    Wiltshire, T. J., Rosch, K., Fiorella, L., & Fiore, S. M. (2014). Training for Collaborative Problem Solving: Improving Team Process and Performance through Metacognitive Prompting. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 1154-1158. doi: 10.1177/1541931214581241
    Wright, G. (2015). Promoting sTEm in Grades 2 – 8 by Engaging Students in Hands-on Engineering and Technology Activities that Leverage Fundament Science and Mathematics Concepts. In D. Slykhuis & G. Marks (Eds.), Proceedings .of Society for Information Technology & Teacher Education International Conference 2015 (pp. 2049-2053). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).
    Yu, W. F., She, H. C., & Lee, Y. M. (2010). The effects of Web‐based/non‐Web‐based problem‐solving instruction and high/low achievement on students’ problem‐solving ability and biology achievement. Innovations in Education and Teaching International, 47(2), 187-199. doi: 10.1080/14703291003718927
    Zhu, C. (2012). Student Satisfaction, Performance, and Knowledge Construction in Online Collaborative Learning. Educational Technology & Society, 15 (1), 127–136.

    下載圖示
    QR CODE