簡易檢索 / 詳目顯示

研究生: 莊淳卉
Chun-Hui Chuang
論文名稱: 使用相似照片進行照片品質評估
Photo Quality Assessment with Similar Images
指導教授: 葉梅珍
Yeh, Mei-Chen
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 42
中文關鍵詞: 支持向量回歸排序支持向量機照片品質評估
英文關鍵詞: support vector regression, ranking support vector machine, photo quality assessment
論文種類: 學術論文
相關次數: 點閱:180下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    使用相似照片進行照片品質評估
    莊淳卉

    照片品質評估問題是對於照片的美感來給照片打分數,在之前的研究中,對於照片品質評估都是從單張照片擷取特徵值。有別以往的實驗,在本論文中我們提出使用谷歌圖片搜索 (Google Image Search) 以圖搜圖找出相似照片來提升照片排名準確度。我們提出了從一組類似的照片中提取新的特徵值:相對 (relative) 特徵值和標準差 (standard deviation) 特徵值來輔助照片評分。我們使用兩個回歸模型:支持向量回歸(SVR)和排序支持向量機(Ranking SVM) 從視覺特徵學習出評分器去預測照片的分數。在實驗中,我們從Photo.net 收集9,000照片,每張照片使用Google Image Search搜索前10張相似的圖像,在我們的資料庫中總共有99,000張圖像。我們研究哪些種類的照片用類似的圖像有利於照片評分。

    關鍵字:支持向量回歸、排序支持向量機、照片品質評估

    ABSTRACT

    Photo Quality Assessment with Similar Images

    by

    Chuang Chun-Hui

    In this paper, we explore using Google Image Search that finds multiple similar images to facilitate the photo quality assessment problem. In particular, we present relative and standard deviation features that are extracted from a group of similar images. We further evaluate two regression models: support vector regression (SVR) and ranking support vector machine (RankSVM) to predict aesthetic scores from visual features. In the experiment, we collected 9,000 images from Photo.net, and for each image we collected 10 similar images using Google Image Search. We examine and identify cases where similar images would benefit the photo quality assessment task.

    Keywords: support vector regression; ranking support vector machine; photo quality assessment.

    TABLE OF CONTENTS LIST OF TABLES vi LIST OF FIGUERS vii Chapter 1 Introduction …. 9 Chapter 2 Related Work ….13 Chapter 3 Aesthetic Features ….15 3.1 Texture 15 3.2 Blur Metric 16 3.3 Relative Feature 18 3.4 Standard Deviation Feature 20 Chapter 4 Regression Models 23 4.1 Support Vector Regression 23 4.2 Ranking Support Vector Machine 25 Chapter 5 Experiment 27 Chapter 6 Conclusion 36 References 41

    REFERENCES

    [1] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.
    [2] Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
    [3] F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur effect: perception and estimation with a new no-reference perceptual blur metric. Human Vision and Electronic Imaging XII, 6492:11.
    [4] R. Datta, D. Joshi, J. Li, and J.Wang. Studying aesthetics in photographic images using a computational approach. Computer Vision ECCV 2006, pages 288-301, 2006.
    [5] Ritendra Datta, Jia Li, and James Ze Wang. Algorithmic inferencing of aesthetics and emotion in natural images: An exposition. In Proc. IEEE ICIP, Special Session on Image Aesthetics, Mood and Emotion, San Diego, CA, 2008.
    [6] Ritendra Datta and James Z Wang. Acquine: aesthetic quality inference engine-real-time automatic rating of photo aesthetics. In Proceedings of the international conference on Multimedia information retrieval, pages 421-424.ACM, 2010.
    [7] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression machines. Advances in neural information processing systems, pages 155-161, 1997.
    [8] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 133-142. ACM, 2002.
    [9] Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 419-426. IEEE, 2006.
    [10] Wei Luo, Xiaogang Wang, and Xiaoou Tang. Content-based photo quality assessment. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2206-2213.
    [11] Y.M. Ro, M. Kim, H.K. Kang, BS Manjunath, and J. Kim. Mpeg-7 homogeneous texture descriptor. ETRI journal, 23(2):41-51, 2001.
    [12] H. Tong, M. Li, H.J. Zhang, J. He, and C. Zhang. Classi_cation of digital photos taken by photographers or home users. Advances in Multimedia Information Processing-PCM 2004, pages 198-205, 2005.
    [13] Lai-Kuan Wong and Kok-Lim Low. Saliency-enhanced image aesthetics class prediction. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 997-1000.
    [14] C.H. Yeh, Y.C. Ho, B.A. Barsky, and M. Ouhyoung. Personalized photograph ranking and selection system. In Proceedings of the international conference on Multimedia, pages 211-220. ACM, 2010.
    [15] Mei-Chen Yeh and Yu-Chen Cheng. Relative features for photo quality assessment. In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 2861-2864.

    下載圖示
    QR CODE