簡易檢索 / 詳目顯示

研究生: 李青芳
Lee Ching-Fung
論文名稱: 圖環弧圖及區間圖上常數時間演算法之設計及研究
The design and researches of constant-time algorithms on circualr-arc graphs and interval graphs
指導教授: 林順喜
Lin, Shun-Shii
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 1998
畢業學年度: 86
語文別: 中文
中文關鍵詞: 環弧圖區間圖常數時間演算法最大獨立集合最小覆蓋問題支配及支配分割問題
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用可重組態匯流排之處理器陣列(PARBS,processor arrays with reconfigurable bus systems)具有在O(1)時間中動態連結內部不同的匯排流之特性,在常數時間內解決在環弧圖(circular-arc graphs)上的最小支配分割問題、最大獨立集合、最小覆蓋集合及最小支配問題,此外還解決區間圖(interval graphs)上的支配分割問題。我們以O(n2)個處理器之可重組態匯流排處理器陣列作為主要的計算模型,並改良Yu[34]及Yu[35]中提到的相關演算法,使得我們能在常數時間內解決上述問題。以下為本篇論文所探討的問題、之前的研究結果及我們獲得的結果。問題之前的結果本篇論文的結果Domatic partitionproblem支配分割問題On interval graphs區間圖上On PRAM model,O(n) processors with O(log n) time, Yu[35]On PARBS model,O(n2) processors with O(1) timeOn proper circular-arc graphs真環弧圖上On Sequential model,O(1) processors with O(n2log n) time, Bonuccelli [6]On PARBS model,O(n2) processors with O(1) timeMaximum independent set problem on circular-arc graphs環弧圖上最大獨立集合問題On PRAM model,O(n) processors with O(log n) time, Yu[34]On PARBS model,O(n2) processors with O(1) timeMinimum circular-cover problemon circular-arc graphs環弧圖上最小覆蓋集合問題On PRAM model,O(n) processors with O(log n) time, Yu[34]On PARBS model,O(n2) processors with O(1) timeOn PARBS model, O(n2+() processors with O(1) time, Lin[25]Minimum dominating set problemon circular-arc graphs環弧圖上最小支配集合問題On PRAM model,O(n) processors with O(log n) time, Yu[34]On PARBS mode,O(n2) processors with O(1) time關鍵字:可重組態匯流排之處理器陣列(PARBS,processor arrays with reconfigurable bus systems)、常數時間演算法、環弧圖(circular-arc graphs)、區間圖(interval graph)、支配分割問題、最大獨立集合問題、最小覆蓋集合問題、最小支配集合問題。

    The objective of this paper is to solve the domatic partition problem on interval graphs and proper circular-arc graphs, maximum independent set problem, minimum circle-cover problem and dominating problem on circular-arc graphs in O(1) time. In this paper, we take advantage of the characteristics of the PARBS(processor arrays with reconfigurable bus systems)﹐which can connect the inner buses in O(1) time. We use O(n2) processors in the study. Below are the comparisons between previous and our results. By combining the characteristics of PARBS and improving the methods of [34][35], we are able to derive constant-time algorithms to solve those paper. ProblemsPrevious resultsOur resultsDomatic PartitionproblemOn intervalgraphsOn PRAM model,O(n) processors with O(log n) time, Yu[35]On PARBS model,O(n2) processors with O(1) timeOn proper circular-arcgraphsOn PARBS model,O(n2) processors with O(1) timeMaximum independentset problem on circular-arc graphsOn PRAM model,O(n) processors with O(log n) time, Yu[34]On PARBS model,O(n2) processors with O(1) timeMinimum circular-cover problem on circular-arc graphsOn PRAM model,O(n) processors with O(log n) time, Yu[34]On PARBS model,O(n2+) processors with O(1) time, Lin[25]On PARBS model,O(n2) processors with O(1) timeMinimum dominatingset problem on circular-arc graphsOn PRAM model,O(n) processors with O(log n) time, Yu[33]On PARBS model,O(n2) processors with O(1) timeKeyword: constant-time algorithm, domatic partition problem, maximum independent set problem, minimum circle-cover problem, dominating problem, interval graphs, proper circular-arc graphs, circular-arc graphs, PARBS(processor arrays with reconfigurable bus systems).

    無法下載圖示
    QR CODE