簡易檢索 / 詳目顯示

研究生: 杜旭軒
Tu, Hsu-Hsuan
論文名稱: 路徑時間/排列編碼在無線通訊網路下的設計
Design of Path Time/Permutation Code in Wireless Communication
指導教授: 賴以威
Lai, I-Wei
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 錯誤率分析車用行動通訊感知無線電跨層通訊物理層通訊多輸出多輸入系統虛擬多輸入多輸出系統路徑時間編碼路徑排列編碼空時編碼
英文關鍵詞: bit error rate analysis, vehicle network, cognitive radio, cross-layer communication, physical layer communication, MIMO, virtual MIMO, path-time code, path-permutation code, space-time code
DOI URL: http://doi.org/10.6345/NTNU202100117
論文種類: 學術論文
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將討論路徑時間編碼以及排列陣列編碼在網路層的應用。在路徑時間編碼的隨意的感知無線電中,我們將對傳輸時資料的等待週期以及重複傳輸的次數進行設計以達到最短的傳輸延遲。而在排列陣列編碼,我們應用代數矩陣編碼對傳送位元進行處理,並將排列陣列對應到傳輸路徑上,以此方式進行傳輸,並將其套用在跨層間通訊網路中。
    本論文首先分析使用路徑時間編碼在快衰變慢刪除路徑給定需求的錯誤率以及等待週期的情況下的最佳的重複傳輸次數,透過代數計算,可求得最佳傳輸次數與錯誤率及等待週期的不等式,並可得知一次完整的傳輸到下一次傳輸開始之間的最短延遲間隔。接著分析在快衰變慢刪除路徑給定需求的錯誤率以及傳輸的延遲間隔的情況下的最佳等待週期,從結果可得知其最佳的等待週期以及其重複傳輸的次數和實際傳輸的延遲時間。
    在排列陣列編碼的部分中,為了解決因為刪除通道模型所導致的在每一次的傳輸有其中一條或是一條以上的路徑遭到刪除使得終端無法接受到完整的封包資訊,故我們提出以代數矩陣編碼對傳送位元先進行處理,使傳輸的資料擁有更好的抗刪除能力,同時也為了解決當系統為了提升傳輸速率而使用d_min較小的排列陣列(PA, permutation array)組合時,為了不讓系統的效能(錯誤率)因為較不好的排列陣列(PA, permutation array)選擇而拖累,故提出了旋轉虛擬傳輸路徑傳輸法以用來解決d_min較小時系統整體分集(diversity)下降的問題,用在路徑對時就對每個路徑隊進行分組並且對每一個分組加上角度的方式讓系統的分集(diversity)強行提升,藉由融合旋轉排列傳輸以及旋轉虛擬傳輸路徑傳輸進一步的改善排列傳輸在物理層及跨層通訊之間的效能。額外的對於旋轉虛擬傳輸路徑,我們也提出一個兩階段式的演算法,來產生出不同參數的虛擬傳輸路徑分組。

    This thesis will discuss the application of path time coding and permutation array coding in the network layer. In the random cognitive radio with path time coding, we will design the waiting period of the data during transmission and the number of repeated transmissions to achieve the shortest transmission delay. In permutation array coding, we use algebraic matrix coding to process the transmitted bits and map the permutation array to the transmission path to transmit in this way and apply it to the cross-layer communication network.
    This thesis first analyzes the optimal number of repeated transmissions using path time coding in the case of fast fading and slow erasure paths with a given demand and waiting period. Through algebraic calculations, the optimal number of transmissions and error rates can be obtained. Wait for the inequality of the period, and know the shortest delay interval between one complete transmission and the beginning of the next transmission. Then analyze the best waiting period under the condition of the error rate of the fast fading and slow erasing path and the transmission delay interval. From the results, we can know the best waiting period and the number of repeated transmissions and the actual transmission time delay.
    In the part of arranging the array code, in order to solve the problem that one or more paths are erased in each transmission caused by the channel deletion model, so that the terminal cannot receive the complete packet information, we propose to use algebra Matrix coding processes the transmitted bits first, so that the transmitted data has better resistance to erasure. At the same time, it also solves the problem of preventing the performance of the system when the system uses a PA combination with a smaller d_min to increase the transmission rate (Error rate) is dragged down by poor PA selection, so the rotating virtual transmission path transmission method is proposed to solve the problem of the overall system diversity decline when d_min is small, and each path team is grouped when the path is paired. And the way of adding angles to each group makes the diversity of the system forcibly increased. By fusing the rotation arrangement transmission and the rotation virtual transmission path transmission, the performance of arrangement transmission between the physical layer and cross-layer communication is further improved. In addition to rotating virtual transmission paths, we also propose a two-stage algorithm to generate virtual transmission path groups with different parameters.

    摘 要 I ABSTRACT III 誌 謝 V 目 錄 VII 圖 目 錄 X 表 目 錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 1.3論文架構 4 第二章 系統模型 5 2.1 多輸入多輸出系統模型 (MIMO) 5 2.2 空間排列調變 (Spatial Permutation Modulation) 6 2.2.1 漢明距離矩陣(Hamming Distance Matrix) 8 2.3 感知無線電 (Cognitive Radio) 10 2.4 車載隨意行動網路 (Vehicular Ad-Hoc Network) 11 2.5 虛擬多輸入多輸出模型 (Virtual MIMO) 13 2.5.1刪除通道模型 (Erasure Channel Model) 13 2.5.2 編碼矩陣 (Coding Matrix) 15 2.5.3 端到端的路徑時間編碼傳輸 (End-to-End PTC Transmission) 16 2.5.4 下限錯誤率 (Error Floor) 17 第三章 路徑時間編碼下的最佳化 19 3.1 鏈結不可用機率相同δ_1=δ_2=δ 19 3.1.1 δ相同的延遲最佳化 (Latency Optimization of The Same δ) 20 3.1.2 δ相同的Data rate最佳化 (Data Rate Optimization of The Same δ) 22 3.2 鏈結不可用機率不相同δ_1≠δ_2,δ_2>δ_1 24 3.2.1 δ不相同的延遲最佳化 (Latency Optimization of Different δ) 25 3.2.2 δ不相同的Data rate最佳化 (Data Rate Optimization of The Same δ) 26 3.3 快刪除通道下的最佳化 27 3.3.1 在快刪除通道下δ相同的延遲最佳化 (Latency Optimization of The Same δ in Fast Erasure Channel) 28 3.3.2 在快刪除通道下δ相同資料傳輸速率最佳化 (Data Rate Optimization of The Same δ in Fast Erasure Channel) 29 3.3.3 在快刪除通道下δ不相同的延遲最佳化 (Latency Optimization of Different δ in Fast Erasure Channel) 31 3.3.4 在快刪除通道下δ不相同的資料傳輸速率最佳化 (Data Rate Optimization of The Same δ in Fast Erasure Channel) 32 第四章 空間排列編碼之技術和應用 34 4.1應用一:物理層通訊(Application 1: Physical Layer Communication) 34 4.1.1開啟天線數 > 1 34 4.2 應用二: 跨層間的通訊(Application2:Cross-layer Communication) 38 4.2.1 使用路徑 = 1 39 4.2.2 使用路徑 > 1 41 4.3 代數路徑排列編碼(Algebraic Path Permutation Code) 44 4.3.1 代數編碼矩陣(Algebraic Code Matrix) 45 4.3.2 代數路徑排列編碼的系統模型(APPC System Model) 47 4.4 空時區塊編碼 (STBC, Space-Time Block Coded) 48 4.4.1 空時區塊編碼空間調變(STBC-SM, Space-Time Block Coded Spatial Modulation) 49 4.4.2 空時區塊編碼空間排列調變(STBC-SPM, Space-Time Block Coded Spatial Permutation Modulation) 50 4.5 技術一:旋轉的排列陣列傳輸 (Rotated Permutation Transmission) 54 4.6 技術二: 旋轉虛擬傳輸天線(路徑)傳輸 (Rotated Virtual Transmit Antenna(Virtual Path) Transmission) 56 4.6.1 空間相關通道(Spatially-Correlated Channels) 56 4.6.2 R mod K=0時的旋轉虛擬傳輸天線(路徑)分組方式 59 4.6.3 R mod K≠0時的旋轉虛擬傳輸天線(路徑)分組方式 64 第五章 數值結果(Numerical Result) 66 5.1 物理層在快通道下的通訊 66 5.1.1使用天線=1 66 5.1.2使用天線>1 69 5.2跨層之間的通訊 76 第六章 結論 81 參考文獻 82 自傳 86 學術成就 86

    [1] 3GPP Technical Report(TR) 38.913 Study on Scenarios and Requirements for Next Generation Access Technologies
    [2] K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, “Ultra-low latency mobile networking” IEEE Network, vol. 33, no. 2,pp. 181–187, Mar 2019.
    [3] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5g low latency applications,” IEEE Access, vol. 5, pp. 5917–5935, Apr. 2017.
    [4] Y. Fangchun, W. Shangguang, L. Jinglin, L. Zhihan, and S. Qibo, ‘‘An overview of Internet of Vehicles,’’ China Commun., vol. 11, no. 10, pp. 1–15, Oct. 2014.
    [5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things (IoT): A vision, architectural elements, and future directions,’’ Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.
    [6] G. Wunder et al., “5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag., vol. 52, no. 2, pp. 97–105, Feb. 2014.
    [7] Y. Sun, H. Song, A. J. Jara, and R. Bie, ‘‘Internet of Things and big data analytics for smart and connected communities,’’ IEEE Access, vol. 4, pp. 766–773, 2016.
    [8] ITU Arab Forum on Emerging Technologies Algiers – Algeria, 14-15 Feb. 2018.
    [9] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in Proc. International Symp. Signals, Syst., Electron. (ISSSE’98), Pisa, Italy, pp. 295-300, Sep. 1998.
    [10] S. M. Alamouti, “A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp.1451-1458, Oct. 1998.
    [11] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
    [12] J. Mitola, “Software radios: wireless architecture for the 21st century,” New York: Wiley, 2000.
    [13] Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive radio networking and communications: An overview,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
    [14] F. Lin et al., "Cognitive radio network as wireless sensor network (II): Security consideration," Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 2011, pp. 324-328.
    [15] J. Yu et al., "Cognitive radio network as wireless sensor network (I): Architecture, testbed, and experiment," Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 2011, pp. 111-117.
    [16] S. L. Loyka, "Channel capacity of MIMO architecture using the exponential correlation matrix," in IEEE Communications Letters, vol. 5, no. 9, pp. 369-371, Sept. 2001.
    [17] Chouhan, Lokesh & Trivedi, Aditya. (2011). Cognitive radio networks: Implementation and application issues in India.
    [18] I.-W. Lai, C.-H. Lee, K.-C. Chen, E. Biglieri, "Path-permutation codes for end-to-end transmission in ad hoc cognitive radio networks", IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3309-3321, Jun. 2015.
    [19] I.-W. Lai, C.-L. Chen, C.-H. Lee, K.-C. Chen, and E. Biglieri, “End-to-end virtual MIMO Transmission in ad hoc cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 330–341, Jan. 2014.
    [20] I.-W. Lai, C.-H. Lee, K.-C. Chen, and E. Biglieri, “Open-loop end-to-end transmission for multihop opportunistic networks with energy-harvesting devices,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2860-2872, 2016.
    [21] I.-W. Lai, C. Lee and K. Chen, "A Virtual MIMO Path-Time Code for Cognitive Ad Hoc Networks," in IEEE Communications Letters, vol. 17, no. 1, pp. 4-7, January 2013.
    [22] T.C. Scott, G. Fee, J. Grotendorst and W.Z. Zhang, "Numerics of the Generalized Lambert W Function", SIGSAM, vol. 48, no. 2, pp. 42-56, June 2014.
    [23] H. Badis, A. Rachedi, “Modeling tools to evaluate the performance of wireless multi-hop networks”, Modeling and simulation of computer Networks and systems-Elsevier, 2015, pp. 653-682.
    [24] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: A 2 × 2
    full-rate space-time code with nonvanishing determinants,” IEEE Trans.
    Inf. Theory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.
    [25] R. Mesleh, S. S. Ikki, and H. M. Aggoune, ‘‘Quadrature spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738–2742, Jun. 2015.
    [26] H. Bölcskei and A. J. Paulraj, “Performance of space-time codes in the
    presence of spatial fading correlation,” in Proc. 34th Asilomar Conf.Signals, Syst., Comput., Oct./Nov. 2010, pp. 687–693.
    [27] Y. Zhang, R. Yu,M. Nekovee, Y. Liu, S. Xie, and S. Gjessing, “Cognitive machine-to-machine communications: Visions and potentials for the smart grid,” IEEE Netw., vol. 26, no. 3, pp. 6–13, May/Jun. 2012.
    [28] R. H. Y. Louie, M. R. McKay, and I. B. Collings, “Open-loop spatial multiplexing and diversity communications in ad hoc networks,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 317–344, Jan. 2011.
    [29] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, highrate
    space-time block codes from division algebras,” IEEE Trans. Inf.
    Theory, vol. 49, no. 10, pp. 2596–2616, Oct. 2003.
    [30] E. Bas¸ar, U¨ mit Aygo¨lu¨, E. Panayırcı, and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823–832, Mar. 2011.
    [31] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey, issues, and enabling technologies,” IEEE Commun. Surv. Tuts., vol. 16, no. 1, pp. 61–76, Fourth Quart. 2014.
    [32] V. Oleshchuk and R. Fensli, “Remote patient monitoring within a future 5G infrastructure,” Wireless Pers. Commun., vol. 57, no. 3, pp. 431-439,2011.
    [33] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. Tuts., vol. 16, no. 4, pp. 1801–1819, Fourth Quart. 2014.
    [34] A. Younis, S. Sinanovic, M. Di Renzo, R. Mesleh, and H. Haas, ‘‘Generalised sphere decoding for spatial modulation,’’ IEEE Trans. Commun., vol. 61, no. 7, pp. 2805–2815, Jul. 2013.
    [35] R. Rajashekar, K. V. S. Hari, and L. Hanzo, ‘‘Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems,’’ IEEE Trans. Commun., vol. 62, no. 1, pp. 112–125, Jan. 2014.

    下載圖示
    QR CODE