研究生: |
杜旭軒 Tu, Hsu-Hsuan |
---|---|
論文名稱: |
路徑時間/排列編碼在無線通訊網路下的設計 Design of Path Time/Permutation Code in Wireless Communication |
指導教授: |
賴以威
Lai, I-Wei |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 錯誤率分析 、車用行動通訊 、感知無線電 、跨層通訊 、物理層通訊 、多輸出多輸入系統 、虛擬多輸入多輸出系統 、路徑時間編碼 、路徑排列編碼 、空時編碼 |
英文關鍵詞: | bit error rate analysis, vehicle network, cognitive radio, cross-layer communication, physical layer communication, MIMO, virtual MIMO, path-time code, path-permutation code, space-time code |
DOI URL: | http://doi.org/10.6345/NTNU202100117 |
論文種類: | 學術論文 |
相關次數: | 點閱:121 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將討論路徑時間編碼以及排列陣列編碼在網路層的應用。在路徑時間編碼的隨意的感知無線電中,我們將對傳輸時資料的等待週期以及重複傳輸的次數進行設計以達到最短的傳輸延遲。而在排列陣列編碼,我們應用代數矩陣編碼對傳送位元進行處理,並將排列陣列對應到傳輸路徑上,以此方式進行傳輸,並將其套用在跨層間通訊網路中。
本論文首先分析使用路徑時間編碼在快衰變慢刪除路徑給定需求的錯誤率以及等待週期的情況下的最佳的重複傳輸次數,透過代數計算,可求得最佳傳輸次數與錯誤率及等待週期的不等式,並可得知一次完整的傳輸到下一次傳輸開始之間的最短延遲間隔。接著分析在快衰變慢刪除路徑給定需求的錯誤率以及傳輸的延遲間隔的情況下的最佳等待週期,從結果可得知其最佳的等待週期以及其重複傳輸的次數和實際傳輸的延遲時間。
在排列陣列編碼的部分中,為了解決因為刪除通道模型所導致的在每一次的傳輸有其中一條或是一條以上的路徑遭到刪除使得終端無法接受到完整的封包資訊,故我們提出以代數矩陣編碼對傳送位元先進行處理,使傳輸的資料擁有更好的抗刪除能力,同時也為了解決當系統為了提升傳輸速率而使用d_min較小的排列陣列(PA, permutation array)組合時,為了不讓系統的效能(錯誤率)因為較不好的排列陣列(PA, permutation array)選擇而拖累,故提出了旋轉虛擬傳輸路徑傳輸法以用來解決d_min較小時系統整體分集(diversity)下降的問題,用在路徑對時就對每個路徑隊進行分組並且對每一個分組加上角度的方式讓系統的分集(diversity)強行提升,藉由融合旋轉排列傳輸以及旋轉虛擬傳輸路徑傳輸進一步的改善排列傳輸在物理層及跨層通訊之間的效能。額外的對於旋轉虛擬傳輸路徑,我們也提出一個兩階段式的演算法,來產生出不同參數的虛擬傳輸路徑分組。
This thesis will discuss the application of path time coding and permutation array coding in the network layer. In the random cognitive radio with path time coding, we will design the waiting period of the data during transmission and the number of repeated transmissions to achieve the shortest transmission delay. In permutation array coding, we use algebraic matrix coding to process the transmitted bits and map the permutation array to the transmission path to transmit in this way and apply it to the cross-layer communication network.
This thesis first analyzes the optimal number of repeated transmissions using path time coding in the case of fast fading and slow erasure paths with a given demand and waiting period. Through algebraic calculations, the optimal number of transmissions and error rates can be obtained. Wait for the inequality of the period, and know the shortest delay interval between one complete transmission and the beginning of the next transmission. Then analyze the best waiting period under the condition of the error rate of the fast fading and slow erasing path and the transmission delay interval. From the results, we can know the best waiting period and the number of repeated transmissions and the actual transmission time delay.
In the part of arranging the array code, in order to solve the problem that one or more paths are erased in each transmission caused by the channel deletion model, so that the terminal cannot receive the complete packet information, we propose to use algebra Matrix coding processes the transmitted bits first, so that the transmitted data has better resistance to erasure. At the same time, it also solves the problem of preventing the performance of the system when the system uses a PA combination with a smaller d_min to increase the transmission rate (Error rate) is dragged down by poor PA selection, so the rotating virtual transmission path transmission method is proposed to solve the problem of the overall system diversity decline when d_min is small, and each path team is grouped when the path is paired. And the way of adding angles to each group makes the diversity of the system forcibly increased. By fusing the rotation arrangement transmission and the rotation virtual transmission path transmission, the performance of arrangement transmission between the physical layer and cross-layer communication is further improved. In addition to rotating virtual transmission paths, we also propose a two-stage algorithm to generate virtual transmission path groups with different parameters.
[1] 3GPP Technical Report(TR) 38.913 Study on Scenarios and Requirements for Next Generation Access Technologies
[2] K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, “Ultra-low latency mobile networking” IEEE Network, vol. 33, no. 2,pp. 181–187, Mar 2019.
[3] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5g low latency applications,” IEEE Access, vol. 5, pp. 5917–5935, Apr. 2017.
[4] Y. Fangchun, W. Shangguang, L. Jinglin, L. Zhihan, and S. Qibo, ‘‘An overview of Internet of Vehicles,’’ China Commun., vol. 11, no. 10, pp. 1–15, Oct. 2014.
[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things (IoT): A vision, architectural elements, and future directions,’’ Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.
[6] G. Wunder et al., “5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag., vol. 52, no. 2, pp. 97–105, Feb. 2014.
[7] Y. Sun, H. Song, A. J. Jara, and R. Bie, ‘‘Internet of Things and big data analytics for smart and connected communities,’’ IEEE Access, vol. 4, pp. 766–773, 2016.
[8] ITU Arab Forum on Emerging Technologies Algiers – Algeria, 14-15 Feb. 2018.
[9] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in Proc. International Symp. Signals, Syst., Electron. (ISSSE’98), Pisa, Italy, pp. 295-300, Sep. 1998.
[10] S. M. Alamouti, “A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp.1451-1458, Oct. 1998.
[11] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
[12] J. Mitola, “Software radios: wireless architecture for the 21st century,” New York: Wiley, 2000.
[13] Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive radio networking and communications: An overview,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
[14] F. Lin et al., "Cognitive radio network as wireless sensor network (II): Security consideration," Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 2011, pp. 324-328.
[15] J. Yu et al., "Cognitive radio network as wireless sensor network (I): Architecture, testbed, and experiment," Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 2011, pp. 111-117.
[16] S. L. Loyka, "Channel capacity of MIMO architecture using the exponential correlation matrix," in IEEE Communications Letters, vol. 5, no. 9, pp. 369-371, Sept. 2001.
[17] Chouhan, Lokesh & Trivedi, Aditya. (2011). Cognitive radio networks: Implementation and application issues in India.
[18] I.-W. Lai, C.-H. Lee, K.-C. Chen, E. Biglieri, "Path-permutation codes for end-to-end transmission in ad hoc cognitive radio networks", IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3309-3321, Jun. 2015.
[19] I.-W. Lai, C.-L. Chen, C.-H. Lee, K.-C. Chen, and E. Biglieri, “End-to-end virtual MIMO Transmission in ad hoc cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 330–341, Jan. 2014.
[20] I.-W. Lai, C.-H. Lee, K.-C. Chen, and E. Biglieri, “Open-loop end-to-end transmission for multihop opportunistic networks with energy-harvesting devices,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2860-2872, 2016.
[21] I.-W. Lai, C. Lee and K. Chen, "A Virtual MIMO Path-Time Code for Cognitive Ad Hoc Networks," in IEEE Communications Letters, vol. 17, no. 1, pp. 4-7, January 2013.
[22] T.C. Scott, G. Fee, J. Grotendorst and W.Z. Zhang, "Numerics of the Generalized Lambert W Function", SIGSAM, vol. 48, no. 2, pp. 42-56, June 2014.
[23] H. Badis, A. Rachedi, “Modeling tools to evaluate the performance of wireless multi-hop networks”, Modeling and simulation of computer Networks and systems-Elsevier, 2015, pp. 653-682.
[24] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: A 2 × 2
full-rate space-time code with nonvanishing determinants,” IEEE Trans.
Inf. Theory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.
[25] R. Mesleh, S. S. Ikki, and H. M. Aggoune, ‘‘Quadrature spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738–2742, Jun. 2015.
[26] H. Bölcskei and A. J. Paulraj, “Performance of space-time codes in the
presence of spatial fading correlation,” in Proc. 34th Asilomar Conf.Signals, Syst., Comput., Oct./Nov. 2010, pp. 687–693.
[27] Y. Zhang, R. Yu,M. Nekovee, Y. Liu, S. Xie, and S. Gjessing, “Cognitive machine-to-machine communications: Visions and potentials for the smart grid,” IEEE Netw., vol. 26, no. 3, pp. 6–13, May/Jun. 2012.
[28] R. H. Y. Louie, M. R. McKay, and I. B. Collings, “Open-loop spatial multiplexing and diversity communications in ad hoc networks,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 317–344, Jan. 2011.
[29] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, highrate
space-time block codes from division algebras,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2596–2616, Oct. 2003.
[30] E. Bas¸ar, U¨ mit Aygo¨lu¨, E. Panayırcı, and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823–832, Mar. 2011.
[31] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey, issues, and enabling technologies,” IEEE Commun. Surv. Tuts., vol. 16, no. 1, pp. 61–76, Fourth Quart. 2014.
[32] V. Oleshchuk and R. Fensli, “Remote patient monitoring within a future 5G infrastructure,” Wireless Pers. Commun., vol. 57, no. 3, pp. 431-439,2011.
[33] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. Tuts., vol. 16, no. 4, pp. 1801–1819, Fourth Quart. 2014.
[34] A. Younis, S. Sinanovic, M. Di Renzo, R. Mesleh, and H. Haas, ‘‘Generalised sphere decoding for spatial modulation,’’ IEEE Trans. Commun., vol. 61, no. 7, pp. 2805–2815, Jul. 2013.
[35] R. Rajashekar, K. V. S. Hari, and L. Hanzo, ‘‘Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems,’’ IEEE Trans. Commun., vol. 62, no. 1, pp. 112–125, Jan. 2014.