Basic Search / Detailed Display

Author: 曾煒崴
Thesis Title: 應用於音頻系統之四倍取樣二階三角積分調變器設計與實現
Design and Implementation of a Quad-Sampling Second-Order Delta-Sigma Modulator for Audio Applications
Advisor: 郭建宏
Degree: 碩士
Master
Department: 電機工程學系
Department of Electrical Engineering
Thesis Publication Year: 2017
Academic Year: 105
Language: 中文
Number of pages: 95
Keywords (in Chinese): 時序交錯四倍取樣多位元三角積分調變器類比數位轉換器
Keywords (in English): Time-Interleaved, Quadruple-Sampling, Multibit Delta-Sigma Modulator, Analog-to-Digital Converter
DOI URL: https://doi.org/10.6345/NTNU202203367
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 184Downloads: 20
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 近年來,因科技的快速發展,及人民生活水準提升。可攜式電子設備在其強調便利且功能完善下,深受社會大眾的廣大的需求。拜現今製成的進步,目前可攜式電子產品發展特色逐漸朝向輕薄短小,晶片系統積體電路的研發成果也功不可沒,其目的於縮小晶片面積、節省功率消耗、降低晶片製作成本、並有效提升整體系統效率等,而在消費者對產品的需求下,屬三角積分調變器的高解析度及對非理想效應性的不敏感等特點,已在儀器、音頻與通信上應用的相當廣泛。

    本篇論文中,提出一個四倍取樣的三角積分調變器。在此架構中,使用四條路徑的取樣電路分別對訊號取樣,藉以提升整體系統的取樣頻率。且在積分時脈當中以創新重疊積分時脈想法來實現此電路。三角積分調變器不僅可以大幅提升類比數位信號的解析度,還達到降低功率消耗的目的。在TSMC 0.18 m 1P6M標準CMOS製程下,供應電壓為1.8 V,系統頻寬為20 kHz,等效的取樣頻率為10 MHz,所得到的訊號雜訊比為71.37 dB,總消耗功率為2.61 mW,整體面積大小為1.45*2.46 mm2。

    In recent years, due to the rapid development of science and technology, and people's living standards. Portable electronic equipment in its emphasis on convenience and functional improvement, by the community's vast needs. Thanks to the progress of today's development, the current characteristics of portable electronic products gradually toward the light and thin, chip system integrated circuit research and development results also contributed to its purpose to reduce the chip area, saving power consumption, reduce wafer production costs, and Effectively enhance the overall system efficiency, and in the consumer demand for products, is a triangular integral modulator high resolution and non-ideal effect of insensitive and other characteristics, has been in the instrument, audio and communication applications rather widely.

    In this paper, we propose a Quadruple Sampling Delta-Sigma Modulator. In this architecture, the four-path is used to sample the signal, thereby increasing the sampling frequency of the overall system. And make the integration clock overlapping overlapped with each other. Delta-Sigma Modulator can not only greatly enhance the analog digital signal resolution, but also to reduce the power consumption of the purpose. In the TSMC 0.18 m 1P6M standard CMOS process, the supply voltage is 1.8 V, the system bandwidth of 20 kHz, the equivalent sampling frequency of 10 MHz, the resulting signal to noise ratio of 71.37 dB, the total power consumption of 2.61 mW , The overall area size is 1.45 * 2.46 mm2.

    摘 要 i ABSTRACT iii 致 謝 v 目 錄 ix 圖 目 錄 xiii 表 目 錄 xvii 第一章 緒論 1 1.1 研究動機與背景 1 1.2 積體電路設計流程 2 1.3 類比數位轉換器之應用與比較 2 1.4 論文大綱與概要 3 第二章 三角積分調變器概論之效能指標與架構比較 5 2.1 前言 5 2.2 效能指標 6 2.2.1 訊號雜訊比 6 2.2.2 訊號雜訊失真比 7 2.2.3 動態範圍 7 2.2.4 無雜波干擾之動態範圍 8 2.2.5 解析度 8 2.3 量化器與量化誤差 9 2.3.1 單位元量化器 9 2.3.2 多位元量化器 10 2.3.3 量化誤差 14 2.4 超取樣 16 2.5 雜訊移頻 18 2.5.1 一階雜訊移頻 19 2.5.2 二階雜訊移頻 23 2.5.3 高階雜訊移頻 26 2.6 章節結論 30 第三章 四倍取樣之三角積分調變器的基本電路元件設計 31 3.1 前言 31 3.2 交換電容式電路 31 3.2.1 離散時間反向積分器 31 3.2.2 離散時間非反向積分器 33 3.3 開關 35 3.3.1 NMOS與PMOS開關 36 3.3.2 傳輸閘開關 37 3.3.3 時脈增強開關電路 39 3.3.4 靴帶式開關 40 3.4 運算放大器 43 3.4.1 運算放大器推導 43 3.5 共模準位回授電路 45 3.6 偏壓電路 45 3.7 多位元量化器 46 3.8 比較器電路 47 3.9 時脈產生器 48 3.10 章節結論 48 第四章 應用於音頻系統之四倍取樣二階三位元三角積分調變器設計與實現 49 4.1 前言 49 4.2 四倍取樣電路之想法與設計 50 4.2.1 四倍取樣電路操作原理 52 4.3 四倍取樣二階三位元三角積分調變器等校線性MATLAB模擬 54 4.3.1 四倍取樣二階三位元三角積分調變器線性架構 54 4.3.2 等效線性架構MATLAB模擬結果 55 4.4 電路非理想效應 57 4.4.1 熱雜訊 57 4.4.2 時脈抖動 60 4.4.3 運算放大器之有限增益 61 4.4.4 運算放大器之閉迴路負載電容 62 4.4.5 運算放大器之有限單增益頻寬、迴轉率與最小電流 64 4.5 重疊積分時脈技術之想法與設計 68 4.5.1 重疊積分時脈設計與操作想法 70 4.5.2 重疊時脈積分器與回授電路實現 73 4.6 四倍取樣二階三位元三角積分調變器設計與電路實現 74 4.6.1 運算放大器之設計 76 4.6.2 三角積分調變器模擬結果 77 4.7 電路佈局與實現 79 4.8 封裝與鎊線效應 80 4.9 晶片量測與實驗結果 81 4.9.1 輸入訊號與終端電路 82 4.9.2 供應電壓源電路的產生─高電位 83 4.9.3 供應電壓源電路的產生─低電位 84 4.9.4 濾波槽電路 84 4.9.5 量測結果 85 4.10 章節結論 89 第五章 總結與未來展望 91 5.1 總結 91 5.2 未來展望 92 參 考 文 獻 93 作 者 簡 歷 95 學 術 成 就 95

    [1] J. M. de la Rosa, “Sigma-Delta Modulator: Tutorial overview, design guid, and state-of-the-art survey,” IEEE Trans. Circuit Syst. I, Reg. Papers, vol. 58no.1,pp. 1-21, Jan.2011.
    [2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
    [3] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
    [4] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp.737-738, Jun. 2001.
    [5] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters: New York: Wiley, 2004.
    [6] K. C. H. Chao, S. Nadeem, W. L. Lee,and C. G.Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.
    [7] W. L. Lee and CC. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in proc. IEEE Intel. Symp. Circuits Syst., 1987, pp. 459-462
    [8] B. DelSignore, D. Kerth, N. Sooch, and E. Swansoon, “A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, col. 25, no. 6, pp.1311-1317, Dec. 1990.
    [9] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel, “A Low-Voltage MOSFET-only Δ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.
    [10] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-OpampΔ Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no.12, pp. 1622-1669 Dec. 2002.
    [11] P. Favart, P. Deval, and M. J. Declercq, “An improved voltage doubler in a standard CMOS technology,” in Proc. IEEE Intel. Symp. Circuits Syst., Hong Kong, June 1997, pp. 249-252.
    [12] P. Favart, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. solid-State Circuits, vol. 33, no. 33,pp. 410-416, Mar. 1998.
    [13] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan.1999.
    [14] L. Yao, M. S. J. Steyaert, and W. Sansen, “A 1-V 140-W 88-dB audio sigma-delta modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1809-1818, Nov. 2004.
    [15] J. Goes. B. Vaz, R. Monteiro, and N. Paulino, “A 0.9 V modulator with 80 dB SNDR and 83 dB DR using single-phase technique,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 191-200.
    [16] E. Bilhan and F. Maloberti, “A wide-band sigma-delta modulator with cross-coupled two-paths,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 886-893, May 2009.
    [17] K.-T. Tiew and M. Je, ”A 0.06-mm2 double-sampling single-OTA 2nd-order Δ modulator in 0.18-m CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp.253-256.
    [18] A. Nilchi and D. A. Johns, “A Low-Power Delta-Sigma Modulator Using a Charge-Pump Integrator,” IEEE Trans. Circuits Syst. I, Page(s): 1310-1321, May 2013.
    [19] R. Khoini-Poorfard and D. A. Johns, “Time-interleaved oversampling converters,” Electron. Lett., vol. 29, no. 19, pp. 1673-1674, Sept. 1993.
    [20] R. Khoini-Poorfard, L. B. Lim, and D. A. Johns, “Time-interleaved oversampling A/D converters: theory and practice,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 634-645, Aug. 1997.
    [21] H. K. Yang and E. I. EI-Masry, “Double sampling delta-sigma modulators,” IEEE Trans. Circuits Syst. II, col. 43, pp. 524-529, July 1996.
    [22] Chien-Hung Kuo, Chang-Hung Chen, Huang-Shih Lin, Shen-Iuan Liu, "A tunable bandpass Δ modulator using double sampling", Circuits and Systems 2005. ISCAS 2005. IEEE International Symposium on, pp. 3676-3679 Vol. 4, 2005.
    [23] P. Rombouts, J. Raman, L. Weyten, "An approach to tackle quantization noise folding in double-sampling Δ modulation A/D converters", Circuits and Systems II: Analog and Digital Signal Processing IEEE Transactions on, vol. 50, pp. 157-163, 2003, ISSN 1057-7130.
    [24] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. New York, NY, USA, 2011.
    [25] L. Yao, M. S. J. Steyaert, and W. Sansen, “A 1-V 140-uW 88dB audio sigma-delta modulator in 90-nm CMOS,” IEEE Journal Solid-State Circuits, vol. 39, no. 11, pp. 1809-1818, Nov.2004.
    [26] J. Goes, B. Vaz, R. Monteiro, and N. Paulino, “A 0.9 V Δ modulator with 80 dB SNDR and 83 dB DR using a single-phase technique”, in IEEE ISSCC Dig. Tech. Papers, 2006, pp.74-75.
    [27] Chien-Hung Kuo, Deng-Yao Shi and Kang-Shuo Chang, “A Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-um CMOS”, IEEE Transactions on Circuits and Systems I,vol. 57 , no. 9 pp.2450-2461, Sep.2010.
    [28] L. Liu, D Li, L. Chen, Y. Ye, and Z. Wang, “A 1-V 15Bit Audio DS –ADC in 0.18um CMOS”, IEEE Trans. on circuits and systems I. Reg. papers, vol. 59, no.5, pp. 915-925, MAY.2012.
    [29] Taewook Kim, Changsok Han, and Nima Maghari, “A 7.2 mW 75.3 dB SNDR 10 MHz BW CT Delta-Sigma Modulator Using Gm-C-Based Noise-Shaped Quantizer and Digital Integrator”, Symposium on VLSI Circuit, June 2015, C258-C259.

    下載圖示
    QR CODE