簡易檢索 / 詳目顯示

研究生: 鄭皓宇
Cheng, Hao-Yu
論文名稱: 以時間解析熱光反射技術測量鑽石薄膜熱傳現象
Thermal Conduction Measurements of Diamond Thin films by Time Domain Thermo Reflectance Technique
指導教授: 賈至達
Chia, Chih-Ta
林宮玄
Lin, Kung-Hsuan
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 47
中文關鍵詞: 鑽石薄膜以時間解析熱光反射技術熱傳導係數熱傳導率
英文關鍵詞: diamond thin film, time domain thermoreflectance, thermal conductivity, thermal conductance
論文種類: 學術論文
相關次數: 點閱:91下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結晶性的鑽石有獨特的性質,如高硬度、高熱傳導率以及低摩擦係數;然而,鑽石薄膜的性質與結晶性的鑽石略有不同,鑽石薄膜的性質決定於長晶技術以及參數,因而可以藉由長晶技術的不同而有不一樣的應用。鑽石薄膜可以在氬氣與甲烷的系統中通入氫氣的微波電漿輔助化學氣相沉積法 (microwave plasma enhanced chemical vapor deposition) 系統製成奈米尺度的大小,不同的百分比的氫氣會影響鑽石薄膜的顆粒結構,以至於影響其熱傳導性質。我們藉由以時間解析熱光反射 (time domain thermoreflectance) 技術測量不同長晶條件下鑽石薄膜的熱傳導性質,此技術必須將鑽石薄膜表面鍍一層鋁膜作為吸收層。當光學脈衝雷射照射在鋁膜,鋁膜吸收脈衝光後產生熱後,可以顯示鋁膜表面溫度在幾個奈秒時間的變化,再藉由理論模型去擬合實驗曲線並求得鑽石薄膜的熱傳導性質。此外,鑽石薄膜的厚度可藉由掃描式電子顯微鏡 (scanning electron microscope) 測得。

    Crystalline diamond possesses several fascinating properties such as high mechanical hardness, high thermal conductivity and low friction coefficient. However, diamond thin films do not always possess the same properties of crystalline diamond. It was demonstrated that the properties of diamond thin films vary a lot depending on the growth techniques and parameters. It is thus possible to optimize the properties of diamond thin films for particular applications. Diamond thin films were engineered at nanoscale by introducing H2 in the commonly used Ar/CH4 deposition plasma in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. The presence of H2 influenced the granular structure of diamond films, resulting in different thermal properties. We utilized time domain thermoreflectance (TDTR) techniques to measure the thermal conductivities of diamond thin films deposited with different growth conditions. For TDTR measurement, all of diamond thin films were coated with an Al thin film as a transducer. After the optical pump pulses generated heat in the Al thin film, we monitored the time evolution of temperature near the surface of the Al film up to a few nanoseconds. We used a heat flow model to fit the TDTR traces and obtained the thermal conductivities of diamond thin films with different granular structures. The thicknesses of the diamond thin films were measured by scanning electron microscope (SEM).

    誌謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 簡介 1 1.1 動機 1 1.2 鑽石 3 1.3 鑽石薄膜 6 1.4 以時間解析熱光反射技術 8 1.5 測量奈米結構熱傳導的其他技術 10 1.6 參考資料 11 第二章 實驗設置 14 2.1 樣品細節 14 2.2 實驗細節 20 2.3 參考資料 24 第三章 熱傳導理論 25 3.1 熱傳遞性質 25 3.2 物質之間介面的熱傳導率 27 3.3 熱傳導模型 29 3.4 光與熱的轉換 34 3.5 參考資料 36 第四章 結果與討論 37 4.1 物理參數對訊號的影響 37 4.2 實驗結果 41 第五章 結論 47

    Chap1.
    1 P. Russer, Ferdinand Braun–A Pioneerin Wireless Technology and Electronics. Proceedings of the 39th European Microwave Conference, 547-554 (2009).
    2 J. Kurian, K.J. Sankaran, and I.N. Lin, On the Role of Graphite in Ultrananocrystalline Diamond Films Used for Electron Field Emitter Applications. Phys. Status Solidi A, 211(10), 2223-2237 (2014).
    3 K.J. Sankaran, S. Kunuku, K.C. Leou, N.H. Tai, and I.N. Lin, Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment. ACS Appl. Mater. Interfaces, 6(16), 14543-14551 (2014).
    4 W. Ahmed et al., Chemical Vapour Deposition of Diamond for Dental Tools and Burs. SpringerBriefs in Materials (2014).
    5 O. Auciello and A.V. Sumant, Status Review of the Science and Technology of Ultrananocrystalline Diamond (UNCDTM) Films and Application to Mulifunctional Devices. Diamond & Related Materials, 19, 699-718 (2010).
    6 K.J. Sankaran, H.C. Chen, K. Panda, B. Sundaravel, C.Y. Lee, N.Y. Tai and I.N. Lin, Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation. ACS Appl. Mater. Interfaces, 6(16), 4911-4919 (2014).
    7 D.M. Gruen, Nanocrystalline Diamond Films. Annu. Rev. Matter. Sci., 29, 211-259 (1999).
    8 B. Bi, W.S. Huang, J. Asmussen and B. Golding, Surface Acoustic Waves on Nanocrystalline Diamond. Diamond and Related Materials, 11, 677-680 (2002).
    9 A.B. Alamin Dow, H. Lin, M. Schneider, C. Petkov, A. Bittner, A. Ahmed, C. Popov, U. Schmid and N.P. Kherani, Ultrananocrystalline Diamond-Based High-Velocity SAW Device Fabricated by Electron Beam Lithography. IEEE Transactions on nanotechnology, 11, 979-984 (2012).
    10 Y. Wang, J.Y. Park, Y.K. Koh and D.G. Cahill, Thermoreflectance of Metal Transducers for Time-Domain Thermoreflectance. J. Appl. Phys., 108, 043507 (2010).
    11 A. Schmidt, M. Chiesa, X. Chen and G. Chen, An Optical Pump-Probe Technique for Measuring the Thermal Conductivity of Liquids. Rev. Sci. Instrum., 79, 064902 (2008).
    12 J. Zhu, D. Tang, W. Wang, J. Liu, K.W. Holub and R.Yang, Ultrafast Thermoreflectance Techniques for Measuring Thermal Conductivity and Interface Thermal Conductance of Thin Films. J. Appl. Phys., 108, 094315 (2010).
    13 K.C. Collins, A.A. Maznev, J. Cuffe, K.A. Nelson and G. Chen, Examining Thermal Transport through A Frequency-Domain Representation of Time-Domain Thermoreflectance Data. Rev. Sci. Instrum., 85, 124903 (2014).
    14 A.J. Schmidt, R. Cheaito and M. Chiesa, A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properites. Rev. Sci. Instrum., 80, 094901 (2009).
    15 Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide and H. Liu, D.G. Cahill, A. Majumdar and A.C. Gossard, Comparison of the 3 Omaga Method and Time-Domain Thermoreflectnace for Measurements of the Cross-Plane Thermal Conductivity of Exitaxial Semiconductors. J. Appl. Phys., 105, 054303 (2009).

    chap2.
    1 B.S. Prawer and R.J. Nemanich, Raman Spectroscopy of Diamond and Doped Diamond. Phil. Trans. R. Soc. Lond. A, 362, 2537-2565 (2004).
    2 K.J. Sankaran, H.C. Chen, K. Panda, B. Sundaravel, C.Y. Lee, N.Y. Tai and I.N. Lin, Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation. ACS Appl. Mater. Interfaces, 6(16), 4911-4919 (2014).
    3 R.M. Costescu, M.A. Wall and D.G. Cahill, Thermal Conductance of Epitaxial Interfaces. Physical Review B, 67, 054302 (2003).

    Chap3.
    1 G.L. Pollack, Kapitza Resistance. Reviews of Modern Physics, 41, 48-81 (1969).
    2 A. Feldman, Algorithm for Solutions of the Thermal Diffusion Equation in A Stratified Medium with A Modulated Heating Source. High Temperature - High Pressure, 31, 293-298 (1999).
    3 H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids. Oxford University Press, 263 (1959).
    4 D.G. Cahill, Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance. Rev. Sci. Instrum., 75, 5119-5122 (2004).
    5 R.M. Costescu, M.A. Wall and D.G. Cahill, Thermal Conductance of Epitaxial Interfaces. Physical Review B, 67, 054302 (2003).

    下載圖示
    QR CODE