簡易檢索 / 詳目顯示

研究生: 吳原榮
Wu, Yuan-Jung
論文名稱: 國中生數學符號素養的創造思考表現
Middle School Students’ Performance in Creative Thinking of Mathematical Symbolic Literacy
指導教授: 謝豐瑞
Hsieh, Feng-Jui
口試委員: 謝豐瑞
Hsieh, Feng-Jui
鄭英豪
Cheng, Ying-Hao
楊凱琳
Yang, Kai-Lin
王婷瑩
Wang, Ting-Ying
謝佳叡
Hsieh, Chia-Jui
口試日期: 2024/06/21
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 169
中文關鍵詞: 形成過程詮釋過程數學符號素養數學創造思考數學過程應用過程
英文關鍵詞: Formulate Process, Interpret Process, Mathematical Symbolic Literacy, Mathematical Creative Thinking, Mathematics Processes, Employ Process
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202401247
論文種類: 學術論文
相關次數: 點閱:99下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過根據PISA數學問題解決形成、應用和詮釋三過程的具體活動設計題目,探討在此三過程中,台灣國中生在符號及其運算中的數學創造思考表現。研究對象兼採立意及方便抽取樣,為在台灣北部和南部各取兩所中等程度以上的國中,在其中32個8年級班級中隨機抽取的210位學生參與研究,其中男生104位,女生106位。研究採問卷調查法,並根據從兩個角度評估學生的創造思考:,一是為學生回答答案的特質;二是,另一為創造思考中基於流暢性、變通性和與獨創性三項的傳統指標,為此,。題目設計與傳統研究創造思考所設計的題目有兩大差異,一為題目乃素養導向試題,二為題目提供了可創造無限多種答案的解答空間以激發學生的創造思考。設計的開放性題目允許學生提出多種可能的創意答案。
    研究結果顯示,當題目設計強調激發學生鼓勵創造性思考維時,大多數學生能夠提出多個適當且多樣的答案。特別是在形成階段過程的題目中,超過80%的學生能提出三個不同的適當答案。然而,當題目限制使用特定、難度較高的數學物件時,學生的數學難度的增加會影響學生提出創造性答案的能力,尤其是當題目限制使用特定數學物件時,這一點在應用過程中的表現尤為明顯,顯示出學生在面對更高挑戰時,創造作答表現明顯力的展現可能會受限。
    不論在哪一個在數學過程中,學生的創造思考表現皆依序為流暢性、變通性和獨創性的順序下降。針對流暢性思考,學生在各數學過程中的表現差異不大;針對變通性思考,學生在詮釋階段過程的表現最佳;針對獨創性思考,學生在形成階段過程的表現最佳。此外,在詮釋過程中,雖然大部分學生能提供至少兩個可接受的答案,但創造出第三個或更多答案的學生比例顯著下降,指出表示這一過程對學生而言可能的創造思考可能更具挑戰性。
    另一個重要發現是,當學生被鼓勵提出具有高差異度和獨特性的答案時,許多學生展現了出色的結合式創造思考能力,提出了遠超預期的創新解答。研究透過K-means群集分析將學生依各數學過程分群,還發現,研究結果顯示,不論是整體學生或分群學生,男女性別對各數學過程中學生學生的整體創造思考表現以及高低數學創造性思考群集上並皆無顯著影響差異。

    This study, based on the three processes of formulate employ, and interpret from PISA mathematical problem-solving, designs tasks to explore the mathematical creative thinking performance of Taiwanese junior high school students in the context of symbols and their operations. The study employs both purposive and convenient sampling, selecting two moderately performing junior high schools each from northern and southern Taiwan. From 32 eighth-grade classes, 210 students were randomly selected to participate. The research uses a questionnaire survey method and evaluates students' creative thinking from two perspectives: the characteristics of students' answers and three indicators of creative thinking—fluency, flexibility, and originality. The task design differs from traditional creative thinking research in two major ways: the tasks are competence-oriented and provide a solution space that allows for infinite answers to stimulate students' creative thinking.
    The results show that when the task design emphasizes stimulating students' creative thinking, most students can propose multiple appropriate answers. Particularly in the formation process tasks, over 80% of students were able to propose three different appropriate answers. However, when tasks limited the use of specific, more challenging mathematical objects, students' performance was significantly constrained. In any mathematical process, students' creative thinking performance decreased in the order of fluency, flexibility, and originality. For fluency, there was little difference in students' performance across the various mathematical processes. For flexibility, students performed best in the interpretation process, and for originality, students performed best in the formation process. Additionally, in the interpretation process, although most students could provide two acceptable answers, the proportion of students who created a third answer significantly decreased, indicating that this process might be more challenging for students' creative thinking.

    Another important finding is that when students are encouraged to propose highly diverse and unique answers, many students exhibited outstanding combinatory creative thinking abilities, presenting innovative solutions beyond expectations. Using K-means cluster analysis to group students by each mathematical process, the results show that, regardless of the overall or clustered students, there were no significant gender differences in students' creative thinking performance in any mathematical process.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究背景 2 第三節 研究目的與問題 6 第四節 名詞解釋 8 第二章 文獻探討 9 第一節 創造力與創造思考 9 一、遠端聯想(Remote Associates,聯結論) 12 二、發散性思考(Divergence thinking) 15 三、遠端聯想與發散性思考 16 四、學校教育的創造力 17 第二節 數學創造力 19 第三節 數學創造力評量 23 第四節 PISA數學素養 28 一、PISA 2022數學素養框架 28 二、PISA 2022數學素養定義 29 三、數學推理 31 四、問題解決三過程 32 第五節 國中生的應用符號素養剖析 35 第三章 研究方法 41 第一節 研究架構 41 第二節 研究設計 43 一、研究工具 43 二、研究樣本 47 三、資料收集與分析 48 第四章 研究結果 57 第一節 形成、應用、詮釋數學符號素養的創造思考特質 57 一、形成過程 57 二、應用過程 63 三、詮釋過程 72 第二節 數學三過程中數學符號素養的流暢性、變通性、獨創性 82 一、形成過程中創造思考指標的樣貌 82 二、應用過程中創造思考指標的樣貌 90 三、詮釋過程中創造思考指標的樣貌 98 第三節 各數學過程中創造思考指標統計描述 106 一、數學創造思考各數學過程信度分析 106 二、各數學過程中三創造思考指標與總分間的相關係數 106 第四節 各數學過程中學生的創造力分數及群集表現特質 111 一、形成過程學生的創造思考分數及群集表現特質 111 二、應用過程學生的創造思考分數及群集表現特質 116 三、詮釋過程學生的創造思考分數及群集表現特質 120 四、學生整體的創造思考分數表現討論 124 第五節 各數學過程中創造思考性別表現的差異 129 一、各數學過程中創造思考性別表現的差異 129 二、各數學過程性別在數學高低創造思考的差異 132 第五章 研究結論 135 第一節 根據研究結果反思研究架構與工具設計 135 第二節 創造思考與數學過程交互之表現 138 第三節 學生整體的創造思考分數表現特質 140 一、創造思考分數表現分析 140 二、學生答題特質分析 140 三、 性別在創造思考的影響 142 第六章 未來應用與研究限制 143 第一節 從研究發展而言 143 一、研究發展 143 二、創造力總分的計算與分析 144 三、未來研究方向 144 四、創造思考指標的拓展 144 第二節 從促進教學發展策略而言 145 一、課程與教學的啟發 145 二、豐富預備知識與練習 148 三、建立創造思考支持環境 149 參考文獻 151

    何偉雲、葉錦燈(2003)。 RAT-like測驗中的發散性思考分析 。 科學教育學刊, 11(2)。https://doi.org:10.6173/CJSE.2003.1102.04
    吳昭容、陳如珍 (2008 , 10月4日) 。 從問題提出看三年級學童的數學創造力 (口頭發表論文)。 臺灣心理學會第47屆年會。
    吳靜吉(1998)。 新編創造性思考測驗研究第2年期末報告。教育部輔導工作六年計劃研究報告。
    林碧珍 (2020) 。 學生在臆測任務課堂表現的數學創造力評量。 科學教育學刊,28 (S) ,429−455。https://doi.org/10.6173/CJSE.202012/SP_28.0002
    席愛勇 (2017)。 符號意識發展的心理機制和教學策略。 中小學教材教學, (2),59-89。
    教育部 (2018)。十二年國民基本教育課程綱要數學領域。 教育部。
    教育部 (2014) 。 十二年國教課程綱要總綱 (第4頁)。教育部。
    教育部(2003)。創造力政策白皮書:打造創造力國度。教育部。
    陳李綢 (2006) 。 國小數學創造力診斷與認知歷程工具研發。 教育心理學報,38 (1) ,1-17。https://doi.org/10.6251/BEP.20060503
    陳盈如、 左太政、 劉嘉茹 (2022)。 PISA視角下: 數學素養概念架構與量表工具之發展與驗證。 科學教育學刊, 30(2), 121-147.
    https://doi.org/10.6173/CJSE.202206_30(2).0002
    陳嘉皇 (2005) 。 數學遊戲及其在課堂上的應用。 臺灣數學教師電子期刊,1,22-29。https://doi.org/10.6610/ETJMT.20050301.04
    彭淑玲、陳學志、黃博聖 (2015)。 當數學遇上創造力:數學創造力測量工具的發展。創造學刊,6 (1) ,83-107。
    臺灣 PISA 國家研究中心 (主編) (2015)。 臺灣 PISA 2012 結果報告。 心理出版社。
    劉宣谷 (2015)。 數學創造力的文獻回顧與探究。 臺灣數學教育期刊,2 (1) ,23-40。https://doi.org/10.6278/tjme.2050313.002
    謝豐瑞、吳原榮、吳嵐婷 (2024) 。 國中生數學符號運算素養的創造思考表現。 臺灣數學教育期刊,11 (1) ,1-36。https://doi.org/10.6278/tjme.202404_11(1).001
    Acar, S., & Runco, M. A. (2014). Assessing associative distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26(2), 229-238.
    Acar, S., & Runco, M. A (2012). Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24(1), 66–75.
    https://doi.org/10.1080/10400419.2012.652929
    Adam E. Green, Roger E. Beaty, Yoed N. Kenett & James C. Kaufman (2023): The Process Definition of Creativity. Creativity Research Journal, https://doi.org/ 10.1080/10400419.2023.2254573
    Albert, R. S., & Runco, M. A. (1998). A history of research on creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp.16–32). Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.004
    Amabile, T. M., & Tighe, E. (1993). Questions of creativity. In J. Brockman (Ed.), Creativity (pp. 7–27). Simon & Schuster.
    Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the learning of mathematics, 25(2), 42-47.
    Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(4), 24-35.
    Azis, A., & Nurlita, M. (2017). Symbol language in learning math in school. Proceedings of the International Seminar 2017 on Management, Education and Entrepreneurship for Global Competitiveness (ISMEEGC 2017), 101–105. https://doi.org/10.17605/OSF.IO/M8YH6
    Balka, D. S. (1974): Creativity ability in mathematics. Arithmetic Teacher 21(7), 633–636.
    Baer, J. (2012). Domain specificity and the limits of creativity theory. Journal of Creative Behavior, 46(1), 16-29. https://doi.org/10.1002/jocb.002
    Baer, J. (2016). Creativity doesn’t develop in a vacuum. In B. Barbot (Ed.), Perspectives on creativity development. New Directions for Child and Adolescent Development, 151, 9–20. https://doi.org/10.1002/cad.20151
    Barron, F. (1955). The disposition toward originality. Journal of Abnormal and Social Psychology, 51(3), 478–485. https://doi.org/10.1037/h0048073
    Bart, W. M., Hokanson, B., Sahin, I., & Abdelsamea, M. A. (2015). An investigation of gender differences in creative thinking abilities among 8th and 11th grade students. Thinking Skills and Creativity, 17, 17-24.
    Becker, J. P., & Shimada, S. (Eds.). (1997). The open-ended approach: A new proposal for teaching mathematics. Reston, VA: National Council of Teachers of Mathematics.
    Bergqvist, E. (2007). Types of reasoning required in university exams in mathematics. The Journal of Mathematical Behavior, 26(4), 348-370.
    Bicer, A. (2021). A systematic literature review: Discipline-specific and general instructional practices fostering the mathematical creativity of students. International Journal of Education in Mathematics, Science, and Technology (IJEMST), 9(2), 252-281. https://doi.org/10.46328/ijemst.1254
    Bruner, J. S. (1966). Toward a theory of instruction. Harvard University Press.
    Bughin, J., Hazan, E., Lund, S., Dahlström, P., Wiesinger, A. & Subramaniam, A. (2018). Skill Shift: Automation and the Future of the Workforce. McKinzey Global Institute. https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Future%20of %20Organizations/Skill%20shift%20Automation%20and%20the%20future%20of %20the%20workforce/MGI-Skill-Shift-Automation-and-future-of-the-workforce May-2018.ashx
    Chamberlin, S. A.& Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Prufrock Journal, 17(1), 37–47.
    Chung, K. (2015). Mathematics is the main driver of economical development. https://tiasang.com.vn/-quan-ly-khoa-hoc/toan-hoc-mot-tru-cot-cua-phat-trien-kinh-te-8320
    Cropley, A. J. (1992). More ways than one: Fostering creativity. Ablex Publishing Corporation.
    De Moss, K., Milich, R., & De Mers, S. (1993). Gender, creativity, depression, and attributional style in adolescents with high academic ability. Journal of Abnormal Child Psychology, 21(4), 455-467.
    Douglas, H., Headley, M. G., Hadden, S., & Lefevre, J. A. (2020). Knowledge of mathematical symbols goes beyond numbers. Journal of Numerical Cognition, 6(3), 322–354. https://doi.org/10.5964/jnc.v6i3.293
    Duchene, A., Graves, R. E., & Brugger, P. (1998). Schizotypal thinking and associative processing: A response commonality analysis of verbal fluency. Journal of Psychiatry and Neuroscience, 23, 56–60.
    Dunn, J. A. (1975). Tests of creativity in mathematics. International Journal of Mathematical Education in Science and Technology, 6(3), 327-332. https://doi.org/10.1080/0020739750060310
    Dunn, J. A. (1976). Discovery, creativity and school mathematics: A review of research. Educational Review, 28(2), 102–117. https://doi.org/10.1080/0013191760280203
    Ervynck, G. (2002). Mathematical Creativity. In D. Tall (Ed.), Mathematics education library, vol 11. Advanced mathematical thinking (pp.42–53). Kluwer Academic. https://doi.org/10.1007/0-306-47203-1_3 (Original work published 1991)
    Friedman, R. S., Fishbach, A., Förster, J., & Werth, L. (2003). Attentional priming effects on creativity. Creativity Research Journal, 15(2-3), 277-286.
    https://doi.org/10.1080/10400419.2003.9651420
    Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487
    Guilford, J. P. (1959). Traits of creativity. In H. H. Anderson (Ed.), Creativity and its cultivation (pp. 142-161). Harper & Brothers Publishers.
    Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53(4), 267–293. https://doi.org/10.1037/h0040755
    Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.
    Guilford, J. P. (1968). Intelligence, creativity, and their educational implications. Robert R. Knapp.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate data analysis (3rd ed.). Macmillan.
    Haylock, D. W. (1978). An investigation into the relationship between divergent thinking in non-mathematical and mathematical situations. Mathematics in School, 7(2), 25. https://www.jstor.org/stable/30213375
    Haylock, D. W. (1984). Aspects of mathematical creativity in children aged 11–12 (Unpublished doctoral dissertation). University of London.
    Haylock, D. W. (1987a). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59–74. https://doi.org/10.1007/BF00367914
    Haylock, D. W. (1987b). Mathematical creativity in schoolchildren. The Journal of Creative Behavior, 21(1), 48–59. https://doi.org/10.1002/j.2162-6057.1987.tb00452.x
    Haylock, D. W. (1997). Recognizing mathematical creativity in schoolchildren. ZDM–Mathematics Education, 29(3), 68–74. https://doi.org/10.1007/s11858-997-0002-y
    Hollands, R. (1972). Educational technology: Aims and objectives in teaching mathematics [Cont.]. Mathematics in School, 1(6), 22–23.
    https://www.jstor.org/stable/30210845
    Jeon, K. N., Moon, S. M., & French, B. (2011). Differential effects of divergent thinking, domain knowledge, and interest on creative performance in art and math. Creativity Research Journal, 23(1), 60–71. https://doi.org/10.1080/10400419.2011.545750
    Jupri, A., & Sispiyati, R. (2021, March). Symbol sense characteristics for designing mathematics tasks. In Journal of Physics: Conference Series (Vol. 1806, No. 1, p. 012051). IOP Publishing. :https://doi.org/ 10.1088/1742-6596/1806/1/012051
    Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM–Mathematics Education, 45(2),167–181. https://doi.org/10.1007/s11858-012-0467-1
    Kaufman, J. C., & Baer, J. (2005). Creativity across domains: Faces of the muse. Lawrence Erlbaum.
    Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13(1), 1−12. https://doi.org/10.1037/a0013688
    Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. John Wiley & Sons.
    Kim, H., Cho, S., & Ahn, D. (2004). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164–174. https://doi.org/10.1177/026142940301800206
    Kim, S., Chung, K.,& Yu, H. (2013). Enhancing digital fluency through a training program for creative problem solving using computer programming. The Journal of Creative Behavior, 47(3), 171–199. https://doi.org/10.1002/jocb.30
    Klavir, R., & Hershkovitz, S. (2007). Teaching and evaluating ‘open-ended’ problems. International Journal for Mathematics Teaching and Learning. https://www.cimt.plymouth.ac.uk/journal/default.htm
    Kousoulas, F., & Mega, G. (2009). Students’ divergent thinking and teachers’ ratings of creativity: Does gender play a role? The Journal of Creative Behavior, 43(3), 209-222.
    Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010) Theories of Creativity. In: J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity. (pp. 20-47.). Cambridge University Press.
    Kriegler, S. (2008). Just what is algebraic thinking. Retrieved September, 10, 2008.
    Krosnick, J. A. (2018). Questionnaire Design. In D. L. Vannette, & J. A. Krosnick (Eds.), The palgrave handbook of survey research (pp. 439–456). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-54395-6_53
    Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press.
    Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51–61. https://doi.org/10.1007/BF03036784
    Laycock, M. (1970). Creative mathematics at Nueva. The Arithmetic Teacher, 17(4), 325–328. https://doi.org/10.5951/AT.17.4.0325
    Lee, K. S., Hwang D. J., & Seo, J. J. (2003). A development of the test for mathematical creative problem solving ability. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 7(3), 163–189.
    Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 2330-2339). University of Cyprus
    Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 161-168). The Korea Society of Educational Studies in Mathematics.
    Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Brill. https:// doi.org/10.1163/9789087909352_010
    Leikin, R., & Elgrably, H. (2019). Problem posing through investigations for the development and evaluation of proof-related skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.04.002/
    Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385–400.
    Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference? ZDM–Mathematics Education, 45(2), 183–197. https://doi.org/10.1007/s11858-012-0460-8
    Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of Representation in the Teaching and Learning of Mathematics (pp. 33-40).
    Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 17–19.
    Lin, C.-Y. (2017). Threshold effects of creative problem-solving attributes on creativity in the math abilities of Taiwanese upper elementary students. Education Research International, 2017, Article ID 4571383. https://doi.org/10.1155/2017/4571383
    Maker, J., & Nielson, A. (1995). Learning environment. In J. Maker & A. Nielson (Eds.), Curriculum development and teaching strategies for gifted learners (2nd ed., pp. 47-66). Pro-Ed.
    Mann, E. L. (2005). Mathematical creativity and school mathematics: Indicators of mathematical creativity in middle school students [Unpublished doctoral dissertation]. University of Connecticut.
    Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–262. https://doi.org/10.4219/jeg-2006-264
    Maxwell, A. A. (1974). An exploratory study of secondary school geometry students: Problem solving related to convergent-divergent productivity (Doctoral dissertation). University of Tennessee, Knoxville, TN. (ERIC Document Reproduction Service No. ED110328).
    Mednick(1962), S. A. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220–232. https://doi.org/10.1037/h0048850
    Milgram, R. M., & Rabkin, L. (1980). Developmental test of Mednick's associative hierarchies of original thinking. Developmental Psychology, 16(2), 157–158. https://doi.org/10.1037/0012-1649.16.2.157
    Mingus, T., &Grassl, R. (1999). What constitutes a nurturing environment for the growth of mathematically gifted students? School Science and Mathematics, 99(6), 286-293.
    Molad, O., Levenson, E. S., & Levy, S. (2020). Individual and group mathematical creativity among post-high school students. Educational Studies in Mathematics, 104(2), 201–220. https://doi.org/10.1007/s10649-020-09952-5
    Mutammam, M. B., & Wulandari, E. N. (2023). Profile of junior high school students’ symbol sense thinking. JTAM (Jurnal Teori dan Aplikasi Matematika). https://journal.ummat.ac.id/index.php/jtam
    National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics education. National Academy Press.
    Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. Demark.
    Novitasari, P., Usodo, B., & Fitriana, L. (2021). Visual, symbolic, and verbal mathematics representation abilities in junior high school’s students. Journal of Physics: Conference Series, 1808, 012046. https://doi.org/10.1088/1742-6596/1808/1/012046
    Novita, R., & Putra, M. (2016). Using task like PISA's problem to support student's creativity in mathematics. Journal on Mathematics Education, 7(1), 31–42. https://doi.org/10.22342/jme.7.1.2815.31-42
    Organization for Economic Cooperation and Development. (2018b). Implementing the Proposed Mathematics Framework: Recommendations for PISA 2021. https://curriculumredesign.org/wp-content/uploads/Mathematics-in-the-21stC_Geneva-Presentation_animated_v15.pdf
    Organization for Economic Cooperation and Development. (2022). Fostering students' creativity and critical thinking: What it means in school. Creativity and critical thinking: From concepts to teacher-friendly rubrics. https://doi.org/10.1787/39557c9f-en
    Organization for Economic Cooperation and Development. (2023). PISA 2022 assessment and analytical framework. OECD Publishing. https://doi.org/10.1787/dfe0bf9c-en
    Office of Science and Technology Policy. (2006). American competitiveness initiative. White House.
    Olsen, F. (1954). The nature of creative thinking. The Phi Delta Kappan, 35(5), 198-200.
    Partnership for 21st Century Skills. (2011). 21st century skills map (ED543032). ERIC. https://files.eric.ed.gov/fulltext/ED543032.pdf
    Pehkonen, E. (1995a). Use of open-ended problems in mathematics classroom. Research Report A Development of the Test for Mathematical Creative Problem Solving Ability, 179, 176. Helsinki University, Finland. Dept. of Teacher Education. (ERIC Document Reproduction Service No. ED419 714).
    Pehkonen, E. (1995b): On pupils' reactions to the use of open-ended problems in mathematics. Nordisk Matematikkdidaktikk. Nomad. (Nordic Studies in Mathematics Education) 3(40), 43-57.
    Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM, 29, 75–80. https://doi.org/10.1007/s11858-997-0001-z
    Permatasari, S. D. A., Budiyono, & Pratiwi, H. (2020). Does gender affect the mathematics creativity of junior high school students? In Journal of Physics: Conference Series (Vol. 1613, 012036). Ahmad Dahlan International Conference on Mathematics and Mathematics Education, 8-9 November 2019, Yogyakarta, Indonesia. IOP Publishing. https://doi.org/10.1088/1742-6596/1613/1/012036
    Petrone, P. (2019a), "The skills companies need the most in 2019 - and how to learn [17] them", Linkedin, The Learning Blog, https://learning.linkedin.com/blog/top-skills/ the-skills-companies-need-most 12 in-2019--and-how-to-learn-them
    Petrone, P. (2019b), "Why creativity is the most important skill in the world", Linkedln, [18] The Learning Blog, https://learning.linkedin.com/blog/top-skills/why creativity-is-the-most-important-skill-in-the-world?trk=lilblog_08-12 19_increase_productivity_learning
    Pham, H. L., & Cho, S. (2018). Nurturing mathematical creativity in schools. Turkish Journal of Giftedness and Education, 8(1), 65-82.
    Plucker, J. A. & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. In R. J. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 153–167).
    Poincaré, H. (1952). Science and method. Thomas Nelson and Sons.
    Poincaré, H. (2012). The foundations of science. Benediction Classics. (Original work published in 1913).
    Renshaw, S. (2011). Creative thinking: Assessing students' learning. Teaching Geography, 36(3), 106-107.
    Rizki, L. M., & Priatna, N. (2019, February). Mathematical literacy as the 21st century skill. In Journal of Physics: Conference Series (Vol. 1157, No. 4, p. 042088). IOP Publishing. https://doi.org/10.1088/1742-6596/1157/4/042088
    Rhodes, M. (1961). An analysis of creativity. The Phi delta kappan, 42(7), 305-310.
    Runco, M. A. (1996). Personal creativity: Definition and developmental issues. In M. A. Runco (Ed.), Creativity from childhood through adulthood (pp. 3-29). Jossey-Bass.
    Sari, V. T. A.,& Hidayat, W. (2019). The students' mathematical critical and creative thinking ability in double-loop problem solving learning. Journal of Physics: Conference Series, 1315, 012024. https://doi.org/10.1088/1742-6596/1315/1/012024
    Schmidt, W. H., Houang, R. T., Sullivan, W. F., & Cogan, L. S. (2022). When practice meets policy in mathematics education: A 19 country/jurisdiction case study. OECD education working papers (No. 268). OECD Publishing. https://doi.org/10.1787/07d0eb7d-en
    Schoevers, E. M., Kroesbergen, E. H., & Kattou, M. (2020). Mathematical creativity: A combination of domain-general creative and domain-specific mathematical skills. The Journal of Creative Behavior, 54(2), 242–252. https://doi.org/10.1002/jocb.361
    Scott, G., Leritz, L., & Mumford, M. D. (2004). The effective ness of creativity training: A quantitative review. Creativity Research Journal, 16(4), 361–388. https://doi.org/10.1080/10400410409534549
    Shafa, S., Zulkardi, & Putri, R. I. I. (2023). Students’ creative thinking skills in solving PISA-like mathematics problems related to quantity content. Jurnal Elemen, 9(1), 271-282. https://doi.org/10.29408/jel.v9i1.6975
    Shriki, A. (2008). Towards promoting creativity in mathematics of pre-service teachers: The case of creating a definition. In R. Leikin (Ed.), Proceedings of the 5th International Conference on Creativity in Mathematics and the Education of Gifted Students (pp. 201-210).
    Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM–Mathematics Education, 29(3), 75–80. https://doi.org/10.1007/s11858-997-0003-x
    Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., Martinez, J. L., 與 Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity and the Arts, 2(2), 68–85. https://doi.org/10.1037/1931-3896.2.2.68
    Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20–36. https://doi.org/10.4219/jsge-2005-389
    Stacey, K. (2006). What is mathematical thinking and why is it important. Progress report of the APEC project: collaborative studies on innovations for teaching and learning mathematics in different cultures (II)-Lesson study focusing on mathematical thinking.
    Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36(2), 311–322. https://doi.org/10.1080/00223980.1953.9712897
    Stephens, K. R., Karnes, F. A., & Whorton, J. (2001). Gender differences in creativity among American Indian third and fourth grade students. Journal of American Indian Education, 40(1), 1-19.
    Sternberg, R. J. (2003). Creative thinking in the classroom. Scandinavian Journal of Educational Research, 47(3), 325–338. https://doi.org/10.1080/00313830308595
    Sternberg, R. J., & Lubart, T. I. (1991). An investment theory of creativity and its development. Human Development, 34(1), 1-31. https://doi.org/10.1159/000277029
    Stoltzfus, G., Nibbelink, B. L., Vredenburg, D., & Thyrum, E. (2011). Gender, gender role, and creativity. Social Behavior and Personality, 39(4), 425-432.
    Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59-89. https://doi.org/10.1207/s1532690xci0201_3
    Tabach, M., & Friedlander, A. (2017). Algebraic procedures and creative thinking. ZDM–Mathematics Education, 49(1), 53–63. https://doi.org/10.1007/S11858-016-0803-Y
    Vale, I., Pimentel, T., & Barbosa, A. (2018). The power of seeing in problem solving and creativity: An issue under discussion. In N. Amado, S. Carreira, 與 K. Jones (Eds.), Broadening the scope of research on mathematical problem solving: A focus on technology, creativity and affect (pp. 243-272). Springer.
    Volle, E. (2018). Associative and controlled cognition in divergent thinking: Theoretical, experimental, neuroimaging evidence, and new directions. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 333–360). Cambridge University Press. https://doi.org/10.1017/9781316556238.020
    Wakefield, J. F. (1992). Creativity tests and artistic talent. Paper presented at the Esther Katz Rosen Symposium on the Psychological Development of Gifted Children, University of Kansas, Lawrence, Kansas.
    Wallas, G. (1926). The art of thought. London, UK: Jonathan Cape.
    Ward, W. C. (1969). Rate and Uniqueness in Children’s Creative Responding. Child Development, 40(3), 869–878. https://doi.org/10.2307/1127195
    Woodrow, D. (1982). Mathematical symbolism. In R. R. Skemp (Guest Ed.), Understanding the symbolism of mathematics. Visible Language, 16(3), 289–302. https://journals.uc.edu/index.php/vl/article/view/5349/4213

    下載圖示
    QR CODE