簡易檢索 / 詳目顯示

研究生: 黃章翔
論文名稱: 兩性水膠作為水泥砂漿自養護劑可行性的探討
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 兩性水膠吸水率水化程度水泥砂漿
論文種類: 學術論文
相關次數: 點閱:342下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇主要研究是利用一兩性水膠PDA作為自養護劑,首先將馬來酸酐和N,N-二甲基胺乙醇反應得到出二甲基胺乙基氧羰基丙烯(DME),DME再與氯醋酸鈉反應合成出單體N,N-二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA),最後將單體和丙烯醯胺以自由基聚合的方式反應得到PDA水膠,探討在不同單體比例、交聯劑劑量與起始劑劑量下水膠對於純水吸水率的影響,以及在不同pH值、溫度與鹽水下吸水率之影響,合成之DME和DCA以FT-IR鑑定結構,將合成之PDA水膠添加於水泥砂漿試體中,探討加入水膠對試體重量損失、內部相對濕度、抗壓強度、塑性乾縮與乾燥乾縮的影響。
    實驗結果顯示在DCA:AM=4:6、MBA=0.5 mol%、APS=0.2 mol%條件下反應合成的PDA在純水和鹽水有最高的吸水率,分別在純水的吸水率為312.5 g/g;在0.1M NaCl溶液下吸水率為31.7 g/g;在0.1M CaCl2溶液下吸水率為22.3 g/g,另外添加適量的PDA可減少水泥砂漿試體的重量損失、維持內部相對濕度、增加抗壓強度,在塑性乾縮和乾燥乾縮方面,與控制組相比之下亦有實際的改善效果,最後使用XRD和DSC分別對水化反應所產生的氫氧化鈣進行定性與定量的分析。

    In this paper is using an amphoteric hydrogel poly(DCA-co- acrylamide) (PDA) as a self-curing agent of mortar. At first, DME (3-((2-(dimethylamino)ethoxy)carbonyl) acrylic acid) was reacted by maleic anhydride and N,N-dimethylethanol -amine.Then DCA was obtained from DME and sodium chloroacetate. At last, DCA was reacted with acrylamide to obtain PDA hydrogel. The effect of the monomer ratio, initiators, and crosslinkers of PDA on the swelling ratio in water was investigated. We also measure swelling ratio of hydrogel in different pH, temperatures and saline solution. The structure of PDA was confirmed by the FT-IR spectra. The effect of containing PDA on weight loss, water retention, relative humidity, compressive strength, plastic shrinkage and drying shrinkage. of mortars were investigated.
    The results indicate that the maximum swelling ratio of PDA (DCA:AM = 4:6;APS = 0.2 mol%;MBA = 0.5 mol%) is 312.5 g/g in water and 31.7 g/g, 22.3 g/g in 0.1M NaCl, 0.1M CaCl2 solution. Added PDA as a a self-curing agent of mortar which can improve weight loss, water retention, relative humidity, compressive strength, plastic shrinkage and drying shrinkage, rather than control group. Fanilly, the hydration degree of cement pastes was measuring by XRD (qualitative analysis) and DSC (quantitative analysis).

    第一章 緒論 1 1-1研究目的 3 1-2研究內容 3 第二章 文獻回顧 5 2-1 水膠 5 2-2 水膠的吸水原理 6 2-3 影響水膠吸水能力之因素 6 2-3-1 親水性官能基種類 6 2-3-2 交聯密度 7 2-3-3 水溶液之離子強度 7 2-3-4 水溶液之pH值 8 2-3-5 多價陽離子造成的螯合效應 9 2-4 水膠的應用 10 2-4-1 醫藥衛生方面的應用 10 2-4-2 人工器官方面的應用 11 2-4-3日用化學方面的應用 12 2-4-4食品工業方面的應用 13 2-4-5農林園藝方面的應用 14 2-5 水泥 15 2-5-1卜特蘭水泥之組成 15 2-5-2 水泥之水化 16 2-5-3 混凝土的收縮變形機制 18 2-6 養護之重要性 19 2-7 水膠於水泥中的研究應用 22 第三章 實驗方法與測量原理 26 3-1 實驗流程 26 3-2 實驗藥品與材料 28 3-2-1藥品 28 3-2-2 水泥 29 3-2-2 強塑劑 29 3-3 實驗儀器 30 3-4 實驗方法 32 3-4-1 DME (3-((2-(dimethylamino)ethoxy)carbonyl)acrylic acid之合成 32 3-4-2 DCA(N,N-dimethyl(3-β-(carboxylate) acryloyl oxyethyl) sodium ethanoate)之合成 33 3-4-3 PDA (Poly(N,N-dimethyl(3-β-(carboxylate) acryloyl oxyethyl) sodium ethanoate-co-acrylamide)之合成 34 3-4-4 紅外光(IR)光譜分析 37 3-4-5 熱示差掃瞄卡量計 (DSC) 37 3-4-6 粉末X光繞射分析儀 (Powder XRD) 38 3-4-7 PDA水膠吸水率測量 38 3-4-8 PDA在不同pH值下吸水率 39 3-4-9 PDA在不同溫度下吸水率 39 3-4-10 PDA在鹽水溶液吸水率 39 3-4-11 水泥砂漿試體之拌製 40 3-4-12 水泥砂漿試體重量損失之測量 41 3-4-13 水泥砂漿抗壓強度測試 41 3-4-14 水泥砂漿試體內部濕度之測量 41 3-4-15 水泥砂漿乾燥收縮 42 3-4-16 水泥漿試體之拌製 42 3-4-17 水泥漿圓盤塑性乾縮製作 43 3-4-18 水泥漿凝結時間試體拌製 44 第四章 結果與討論 45 4-1 水膠結構的鑑定與分析 45 4-1-1 DME之結構分析 45 4-1-2 DCA之結構分析 45 4-1-3 PDA之結構分析 46 4-2 水膠在純水中的吸水行為 48 4-2-1 不同單體比例對吸水率的影響 48 4-2-2 起始劑劑量對吸水率的影響 50 4-2-3 交聯劑劑量對吸水率的影響 51 4-2-4 溫度對吸水率的影響 56 4-3 不同PH值水溶液對水膠吸水行為的影響 57 4-4 不同鹽水溶液對PDA4111的吸水行為 58 4-5-1 不同濃度鹽水溶液對PDA4111的吸水行為 59 4-6 添加PDA4111對水泥砂漿保水性質的影響 63 4-6-1 PDA4111對水泥砂漿試體重量損失的影響 63 4-6-2 PDA4111對水泥砂漿試體抗壓強度的影響 65 4-6-3 PDA4111對乾燥收縮的影響 66 4-6-4 PDA4111含水量對水泥砂漿重量損失的影響 65 4-6-5 PDA4111含水量對抗壓強度的影響 69 4-7 添加PDA4111對水泥漿保水性質的影響 70 4-7-1 添加PDA4111對水泥漿圓盤裂縫的影響 70 4-7-2 XRD:水化程度的定性分析 75 4-7-3 DSC:水化程度的定量分析 80 4-7-4 添加PDA4111對水泥漿凝結時間的影響 83 第五章 結論 86 第六章 參考資料 88

    1. M. R. Lutfor, S. Sidik, and W. M. Z. Yunus, Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch, Carbohydr. Polym. 45 (2001), 95-100

    2. W. S. Cai, and R. B, Gupta, Thermosensitive and Ampholytic Hydrogels for Salt Solution, Journal of Applied Polymer Science 88 (2003), 2032–2037

    3. R. L. Wu, S. M. Xu, X. J. Huang, L. Q. Cao, S. Feng and J. D. Wang, Swelling Behaviors of a New Zwitterionic N-carboxymethyl-N,N- dimethyl- N-allylammonium/acrylic Acid Hydrogel, Journal of Polymer Research 13 (2006), 33–37

    4. D. P. Bentz, M. R. Geiker, K. K. Hansen, Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars, Cem. Concr. Res. 31 (2001), 1075–1085

    5. 吳季懷, 林建明, 魏月琳, 林松柏, 高吸水保水材料, 化學工業出版社, (2005).

    6. P. J. Flory, Principle of Polymer Chemistry, (1953).

    7. H. Tokuyama, N. Ishihara and S. Sakohara, Effects of synthesis-solvent on swelling and elastic properties of poly(N-isopropylacrylamide) hydrogels, European Polymer Journal 43 (2007), 4975–4982.

    8. O. Okay and S. B. Sariisik, Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments, European Polymer Journal 36 (2000), 393–399.

    9. A. Pourjavadi *, Sh. Barzegar, G.R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels, Carbohydrate Polymers 66 (2006), 386–395.

    10. Z. S. Liu and G. L. Rempel, Preparation of Superabsorbent Polymers by Crosslinking Acrylic Acid and Acrylamide Copolymers, J Appl Polym Sci 64 (1997)

    11. G. R. Mahdavinia, M. J. Zohuriaan-Mehr and A. Pourjavadi, Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN, Polym. Adv. Technol 15 (2004), 173–180.

    12. C. Weinmuller, C. Langel, F. Fornasiero, C.J. Radke and J.M. Prausnitz Sorption kinetics and equilibrium uptake for water vapor in soft-contact-lens hydrogels, J Biomed Mater Res 77A (2006), 230–241.

    13. Changwen Zhao, Xiuli Zhuang, Pan He, Chunsheng Xiao, Chaoliang He, Jingru Sun, Xuesi Chen and Xiabin Jing, Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release, Polymer 50 (2009), 4308–4316

    14. Shuichi Aoyagi, Hiraku Onishi and Yoshiharu Machida, Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds, International Journal of Pharmaceutics 330 (2007), 138–145

    15. 楊思廉, 工業化學概論, 高立 (1992).

    16. 黃兆龍, 混凝土性質與行為, 詹氏書局, 台北 (1997).

    17. C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998), 87–101.

    18. S. Hanehara and K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cem. Concr. Res. 29 (1999), 1159–1165.

    19. C. S. Viswanatha, Self Curing Concrete Recent Developments, ICACC, (2008) 378–394.

    20. D.P. Bentz, E.F. Irassar, B. Bucher and W.J. Weiss, Limestone Filler to Limestone Fillers to Conserve Cement in Low w/cm Concretes: An Analysis Based on Powers' Model, Concrete International, 31 (2009), 41–46.

    21. Ole Mejlhede Jensen and Per Freiesleben Hansen, Water-entrained cement-based materials I. Principles and theoretical background, Cement and Concrete Research 31 (2001), 647–654

    22. T. A. Hammer and E. J.Sellevold, Cracking in high performance concrete before seeting, , Sherbrooke, (1998), 1-16

    23. A. Pourjavadi, S. Barzegar and G. R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels, Carbohydrate Polymers 66 (2006), 386–395.

    24. S.J. Kim, S. R. Shin, D.I. Shin, I.Y. Kim, and S.I. Kim, Synthesis and Characteristics of Semi-interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(hydroxy ethyl methacrylate), J Appli Polym Sci, 96 (2005), 86–92.

    25. G. R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh and M. J. Zohuriaan, Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties, European Polymer Journal 40 (2004), 1399–1407.

    26. S. Xu, R. Wu, X. Huang, L. Cao and J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-codiallyldimethylammonium chloride), J. Appl. Polym. Sci. 102 (2006), 986–991.

    27. Ali Pourjavadi and Mehran Kurdtabar, Effect of different bases and neutralization steps on porosity and properties of collagen-based hydrogels, Polym Int 59 (2010), 36–42

    28. W. F. LEE and G. H. LIN, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions, J. Appl. Polym. Sci. 79 (2001), 1665–1674

    29. A.P. Kirchheim, V.F. Fernàndez, P.J. Monteiro, D. C. Dal Molin, and I. Casanova, Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime, J Mater Sci, 44 (2009), 2038–2045.

    30. S. P. Shah, and K.Wang, Development of “green” cement for sustainable concrete using cement kiln dust and fly ash, International Workshop on Sustainable Development and Concrete Technology.

    31. M.Y.A. Mollah, F. Lu, and D.L. Cocke, An X-ray diffraction XRD and Fourier transform infrared spectroscopic FT-IR. characterization of the speciation of arsenic (V) in Portland cement type-V, The Science of the Total Environment, 224 (1998), 57-68.

    32. W. Sha, E. A. O'Neill, and Z. Guo, Differential scanning calorimetry study of ordinary Portland cement, Cement and Concrete Reasearch 29 (1999) 1487-1489.

    33. W. Sha, and G. B. Pereira, Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity, Cement &Concrete Composite 23 (2001), 455-461.

    34. Zhihong, W. Yucuia, H., and Yuan, H..Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 33 (2003), 1655–1658.

    35. Mishra, P. C. Singh, V. K. Narang, K. K., and Singh, N.K.. Effect of carboxymethyl-cellulose on the properties ofcement. Materials and Engineering, 357 (2003), 13–19.

    下載圖示
    QR CODE