簡易檢索 / 詳目顯示

研究生: 李緯祿
Li, Wei-Lu
論文名稱: 沉浸式虛擬實境技術輔助展現三維地形特徵圖之研究─以木柵圖幅為例
Research on Using Immersive Virtual Reality Technology to Assist in the Presentation of Three-Dimensional Geomorphological Maps─Muzha Geomorphological Map as an Example
指導教授: 王聖鐸
Wang, Sendo
口試委員: 王聖鐸
Wang, Sendo
陳哲銘
Chen, Che-Min
徐百輝
Hsu, Pai-Hui
口試日期: 2024/12/27
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 147
中文關鍵詞: 沉浸式虛擬實境地形特徵圖木柵虛幻引擎
英文關鍵詞: Immersive Virtual Reality, Geomorphological Map, Muzha, Unreal Engine
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500322
論文種類: 學術論文
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討沉浸式虛擬實境(Immersive Virtual Reality, IVR)技術於地形特徵圖展示中的應用,並以普通地形特徵圖─木柵圖幅為例,以遊戲引擎設計一套具備互動性的三維沉浸式虛擬實境地形特徵圖軟體。傳統地形特徵圖多以二維平面形式呈現,使用者較難以直觀方式理解地形的立體關係,尤其在面對複雜的地形構造(如滑動面、崩塌區等)時,使用者的判讀常受到限制。為解決此問題,本研究採用多媒體認知學習理論(Cognitive Theory of Multimedia Learning, CTML)作為沉浸式虛擬實境設計指引,並藉由Blender進行三維地形建模,將特徵地形(如滑坡、土石流、沖積扇等)及立體地形模型以物件化的方式呈現,並運用Unreal Engine 5開發沉浸式虛擬實境系統,讓使用者能身臨其境地觀察和互動。本研究的實驗設計包含地圖認知前測、後測及使用者體驗等問卷,參與者需依序使用傳統紙本地形圖或沉浸式虛擬實境地形特徵圖,並完成一系列地形判讀認知試題任務,以問卷評估其在判讀正確性、操作流暢性及學習成效的變化。
    本研究參考Tcha-Tokey, Christmann, Loup-Escande, and Richir (2016)提出虛擬環境使用者體驗問卷,設計適用於本研究的李克特五點式量表問卷檢測使用者的實在感(presence)、互動性(interaction)、沉浸感(immersion)等面向,並同時以開放式問題蒐集使用者整體回饋。研究結果顯示,相較於傳統紙本地形圖,IVR系統在地形立體感知、地形與地物的空間關係理解上具有優勢,實驗受測者在沉浸式環境中,能透過視角切換、物件點選等互動方式,直觀地觀察地形變化與地景形成過程;使用者體驗問卷的分析結果顯示,參與者對虛擬實境系統的真實感、互動性及沉浸感評價較高,且部分使用者提出建議,認為可進一步增強地形物件的細節表現及流暢性操作。綜合而言,本研究展示了沉浸式虛擬實境技術在地形特徵圖展示中的應用潛力,特別是在輔助環境教育、風險溝通及防災教育領域,本研究的技術實作經驗與評估成果,期望可作為未來推動地理教育數位化轉型及強化災害風險教育實務參考。

    This research aims to explore the application of Immersive Virtual Reality (IVR) technology in the display of geomorphological maps, using the Muzha Geomorphological Map as an example. By employing a game engine, the study designs an interactive 3D immersive virtual reality geomorphological map system. Traditional geomorphological maps are typically presented in 2D, making it challenging for users to intuitively understand the three-dimensional relationships of terrain, especially when dealing with complex geomorphological structures such as Landslide area or collapse zones.To address this issue, this study adopts the Cognitive Theory of Multimedia Learning (CTML) as a design guideline for immersive virtual reality. Using Blender, the study creates 3D terrain models and geomorphological feature objects (e.g., landslides, debris flows, and alluvial fans) as objectified components. The system is then developed using Unreal Engine 5, allowing users to immerse themselves in the environment, observe terrain features, and interact with them in an intuitive manner.
    The experimental design includes cognitive pre-tests, post-tests, and user experience questionnaires. Participants use either traditional paper-based geomorphological maps or immersive virtual reality geomorphological maps to complete a series of cognitive tasks related to terrain interpretation. Their performance is evaluated in terms of interpretation accuracy, operational fluency, and learning effectiveness.This study references the Virtual Environment User Experience Questionnaire proposed by Tcha-Tokey, Christmann, Loup-Escande, and Richir (2016) to design a 5-point Likert scale questionnaire tailored to this study. The questionnaire evaluates users' presence, interaction, and immersion. Additionally, open-ended questions are included to collect users' overall feedback on system improvements and experience.The results show that, compared to traditional paper-based geomorphological maps, the IVR system offers notable benefits in 3D terrain perception and understanding the spatial relationships between terrain and geomorphological features. Participants in the immersive environment could intuitively explore terrain changes and landform development processes through interactive features such as viewpoint switching and object selection. Analysis of the user experience questionnaire indicates that participants rated the IVR system highly for its sense of presence, interactivity, and immersion. Some participants also suggested further enhancing the level of detail in terrain features and improving the fluidity of interactions.In summary, this study demonstrates the potential of immersive virtual reality technology in the display of geomorphological maps, particularly in supporting environmental education, risk communication, and disaster education. The technical implementation experience and evaluation results of this study are expected to serve as practical references for the future promotion of digital transformation in geography education and the enhancement of disaster risk education.

    謝誌 I 摘要 III Abstract V 目錄 VII 表目錄 IX 圖目錄 X 第1章 緒論 1 1.1研究動機 1 1.2研究目的 3 第2章 文獻回顧 4 2.1 臺灣地形特徵圖發展 4 2.2沉浸式虛擬實境技術 6 2.3多媒體認知學習理論 9 2.4 沉浸式虛擬實境應用評估 13 第3章 沉浸式虛擬實境地形特徵圖製作 18 3.1製圖資料來源 20 3.2三維地形物件製作 22 3.3沉浸式虛擬實境軟體製作 23 3.3.1 遊戲引擎基礎設定 23 3.3.2 地形物件匯入與材質設定 24 3.3.3 虛擬實境地圖工具製作 26 第4章 實驗設計 29 4.1製圖資料預處理 29 4.2轉製三維地形模型物件 30 4.3沉浸式虛擬實境軟體製作 37 4.3.1沉浸式虛擬實境地圖工具製作 39 4.3.2 多媒體認知學習理論與地圖工具設計 103 4.4 問卷設計與地圖實測流程 105 4.4.1 問卷設計 105 4.4.2 地圖實測流程 107 4.4.3 地圖實測裝置與環境 109 第5章 實驗結果與討論 110 5.1 前測-使用者基本資料分析 110 5.2 認知試題成效分析 116 5.3 使用者體驗分析 118 5.4 沉浸式虛擬實境整體回饋 120 第6章 結論與建議 122 6.1沉浸式虛擬實境技術展現地形特徵圖 122 6.2沉浸式虛擬實境地圖實務應用與建議 123 6.3研究限制與未來研究方向 124 參考文獻 125 附錄:問卷 130

    Alyamkin, V. (2021). VaRest. Retrieved from https://github.com/ufna/VaRest Access on June 3, 2024
    Bamodu, O., & Ye, X. M. J. A. m. r. (2013). Virtual reality and virtual reality system components. 765, 1169-1172.
    Biocca, F., & Levy, M. R. (2013). Communication in the age of virtual reality: Routledge.
    Blender. (2024). Decimate Modifier. Retrieved from https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.html Access on July 13, 2024
    Bos, D., Miller, S., & Bull, E. J. J. o. G. i. H. E. (2022). Using virtual reality (VR) for teaching and learning in geography: fieldwork, analytical skills, and employability. 46(3), 479-488.
    Bot, J. A., Irschick, D. J., Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., Ikeshoji-Orlati, V. J. G., eds. D, & et al. (2019). Using 3D photogrammetry to create open-access models of live animals: 2D and 3D software solutions. 3, 54-72.
    Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology: John Wiley & Sons.
    Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149-210.
    domlysz. (2022). BlenderGIS. Retrieved from https://github.com/domlysz/BlenderGIS Access on January 3, 2024
    Epic Games. (2024). Datasmith supported software and file types. Unreal Engine Documentation. Retrieved from https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types Access on May 23, 2024
    Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: state of the art and perspectives. Paper presented at the The international scientific conference elearning and software for education.
    Halik, Ł. (2019). Challenges in Converting the Polish Topographic Database of Built-Up Areas into 3D Virtual Reality Geovisualization. The Cartographic Journal, 55(4), 391-399. doi:10.1080/00087041.2018.1541204
    Halik, Ł., & Kent, A. J. (2021). Measuring user preferences and behaviour in a topographic immersive virtual environment (TopoIVE) of 2D and 3D urban topographic data. International Journal of Digital Earth, 14(12), 1835-1867. doi:10.1080/17538947.2021.1984595
    Heilig, M. L. (1960). Stereoscopic-television apparatus for individual use. In.
    Heilig, M. L. J. U. P., 050,870. (1962). Sensorama simulator.
    Hruby, F., Sánchez, L. F. Á., Ressl, R., Escobar-Briones, E. G. J. P. J. o. P., Remote Sensing, & Science, G. (2020). An empirical study on spatial presence in immersive geo-environments. 88, 155-163.
    Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23, 1515-1529.
    Kalawsky, R. S. (1999). VRUSE—a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Applied ergonomics, 30(1), 11-25.
    Keil, J., Edler, D., Schmitt, T., & Dickmann, F. (2021). Creating Immersive Virtual Environments Based on Open Geospatial Data and Game Engines. KN - Journal of Cartography and Geographic Information, 71(1), 53-65. doi:10.1007/s42489-020-00069-6
    Lee, E. J. G. S., London, Engineering Geology Special Publications. (2001). Geomorphological mapping. 18(1), 53-56.
    Makransky, G., Terkildsen, T. S., Mayer, R. E. J. L., & instruction. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. 60, 225-236.
    Mayer, R., & Fiorella, L. (2022). The Cambridge Handbook of Multimedia Learning (3rd ed.).
    Mayer, R. E., & Fiorella, L. (2021). The Cambridge Handbook of Multimedia Learning: Cambridge University Press.
    Meta. (2024). Testing and performance analysis: Debugging Unreal applications on Android. Oculus Developers. Retrieved from https://developer.oculus.com/documentation/unreal/unreal-debug-android/ Access on January 11, 2024
    Nalbant, G., & Bostan, B. (2006). Interaction in virtual reality. Paper presented at the 4th international symposium of interactive medial design (ISIMD).
    Otto, J.-C., & Smith, M. J. (2013). Geomorphological mapping. British Society for Geomorphology, Geomorphological Techniques, Chap. 2, Sec. 6.
    Paivio, A. (2006). Mind and its evolution: A dual coding theoretical interpretation. Mahwah, NJ.
    Paivio, A., Clark, J. M., Digdon, N., & Bons, T. (1989). Referential processing: Reciprocity and correlates of naming and imaging. Memory & Cognition, 17(2), 163-174.
    Prithul, A., Adhanom, I. B., & Folmer, E. (2021). Teleportation in Virtual Reality; A Mini-Review. Frontiers in Virtual Reality, 2. doi:10.3389/frvir.2021.730792
    Radianti, J., Majchrzak, T. A., Fromm, J., Wohlgenannt, I. J. C., & education. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. 147, 103778.
    Schuemie, M. J., Van Der Straaten, P., Krijn, M., Van Der Mast, C. A. J. C., & behavior. (2001). Research on presence in virtual reality: A survey. 4(2), 183-201.
    Seijmonsbergen, A. (2013). The modern geomorphological map.
    Steuer, J. (2000). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42. doi:10.1111/j.1460-2466.1992.tb00812.x
    Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cogn. Sci., 12, 257-285.
    Tcha-Tokey, K., Christmann, O., Loup-Escande, E., & Richir, S. (2016). Proposition and validation of a questionnaire to measure the user experience in immersive virtual environments. International Journal of Virtual Reality, 16(1), 33-48.
    Treshchev, G. (2023). RuntimeSpeechRecognizer. Retrieved from https://github.com/gtreshchev/RuntimeSpeechRecognizer Access on November 3, 2023
    Wittrock, M. C. (1989). Generative processes of comprehension. Educational psychologist, 24(4), 345-376.
    沈淑敏、王聖鐸、張國楨. (2020). 建構防災地形分類與地圖製圖規範研究-III。國家災害防救科技中心委託辦理計畫(NCDR-S-109036)。.
    沈淑敏、羅佳明、王聖鐸. (2018). 建構防災地形分類與地圖製圖規範研究。國家災害防救科技中心委託辦理計畫(NCDR-S-107019)。.
    沈淑敏;羅佳明;王聖鐸. (2017). 細緻化地質地貌特徵地圖製作研究。國家災害防救科技中心委託辦理計畫(NCDR-S-106038)。.
    康祐程. (2018). 臺灣地形特徵圖繪製之研究-以木柵圖幅為例。國立臺灣師範大學碩士論文。.

    下載圖示
    QR CODE