簡易檢索 / 詳目顯示

研究生: 古岳白
論文名稱: 低磁場核磁共振之高溫超導平面式訊號耦合線圈特性研究
The Characteristics of Low-Field NMR System Using High-Tc Superconducting Plane Coupling Coil
指導教授: 楊鴻昌
Yang, Hong-Chang
洪姮娥
Horng, Herng-Er
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 40
中文關鍵詞: 超導量子干涉元件低磁場核磁共振平面式超導線圈
論文種類: 學術論文
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以一個高溫的超導量子干涉元件(Superconducting quantum interference device, SQUID)為基礎的核磁共振偵測系統。作用在102μT的靜磁場,預極化磁場為420 Gauss,梯度磁場Gz=1.2 μT/m下測量去離子水與三甲基磷酸的NMR訊號,觀察其J-coupling之訊號。
    在本研究中,輸入線圈(input coil)部分使用YBa2Cu3Oy (YBCO)製作平面式的超導線圈,來取代螺線管線圈,以覆蓋式的方式直接與SQUID耦合,並比較兩種耦合方式所測量的NMR訊號。

    第一章 緒論 1 第二章 實驗原理 2 2-1 低磁場之核磁共振介紹 2 2-2 核磁共振原理 3 2-2-1 核磁共振 3 2-2-3 B1脈衝 7 2-2-4 鬆弛,自旋晶格弛緩時間與自旋自旋弛緩時間 8 2-2-5 自由感應衰退(Free Induction Decay) 11 2-3 J-coupling原理 12 第三章 實驗架構 15 3-1 系統架構介紹 15 3-2 預先極化線圈 (Pre-polarization coil) 16 3-3 冷卻水系統 17 3-4 靜磁場 (Static Field) 18 3-5 梯度磁場 (Gradient Field) 21 3-6 利用平面超導線圈耦合NMR訊號之系統架設 23 第四章 實驗結果與數據討論 25 4-1 接收線圈之最佳化 25 4-2 平面式超導線圈耦合SQUID之NMR系統量測結果 26 4-3 不同接收線圈之比較 28 4-4 j-coupling 32 4-5 相同輸入線圈匝數下之量測比較 35 第五章 結論及未來展望 37 參考文獻 38 致謝 40

    [1] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [2] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [3] H. C. Seton, J.S.M. Hutchison, D. M. Busell, IEEE Trans. Appl. Supercon. 7, 3213 (1997).
    [4] Hong-Chang Yang,Shu-Hsien Liao, Herng-Er Horng,Shing-Ling Kuo,Hsin-Hsien Chen, and S. Y. Yang, Appl. Phys. Lett. 88, 252505 (2006)
    [5] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, Appl. Phys. Lett. 70, 1037 (1997).
    [6] S. Kumar, W. F. Avrin, B. R. Whitecotton, IEEE Trans. Magn. 32, 5261 (1996).
    [7] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
    [8] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [9] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [10] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87, 054103 (2005)
    [11] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer,” Theory of spin-exchange optical pumping of 3He and 129Xe “, Phys. Rev. A 58, 1412 (1998).
    [12] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI “, Magn.Reson. Imaging 23, 153 (2005)
    [13] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [14] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
    [15] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [16] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [17] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [18] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [19] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA
    [20] A.E. Derome, "NMR Techniques for Chemistry Research",Pergamon Press, NY (1987)
    [21] Atta-ur-Rahman, "Nuclear Magnetic Resonance, Basic Principles",Springer-Verlag, NY (1986)
    [22] Brend Seeber, Handbook of Applied Superconductivity
    [23] W.G. Proctor, F.C. Yu, “On the Nuclear Magnetic Moments of Several Stable Isotopes “, Phys. Rev. 81, 20 (1951)
    [24] Zhi-Pei Liang and Paul C. Lauterbur, ”Principles of MageeticResonance Imaging: A Signal Processing Perspective”
    [25] Shu-Hsien Liao, Kai-Wen Huang, Hong-Chang Yang*, Chang-Te Yen, M. J. Chen, Hsin-Hsien Chen, Herng-Er Horng*, and Shieh Yueh Yang, Appl. Phys. Lett. 97, 263701 (2010)
    [26] Chieh-Wen Liu ,The Research of Magnetic Relaxation in Fe304-Anti CRP by Using Low-Field NMR System. (2011)
    [27] I. Sasada and Y. Nakashim,”Planar coil system consisting of three coil pairs for producing a uniform magnetic field”, J. Appl. Phys. 99, 08D904 (2006)
    [28] Robert McDermott, Andreas H. Trabesinger, John Clarke,” Liquid-State NMR and Scalar Couplings in Microtesla MagneticFields”, Science, 295,2247 (2002)

    無法下載圖示 本全文未授權公開
    QR CODE