研究生: |
吳俊彥 Wu, Chun-Yen |
---|---|
論文名稱: |
全固態鋰離子薄膜電池 All-Solid-State Lithium Ion Thin Film Batteries |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 全固態 、薄膜電池 、碘化鋰 、人工固態電解質接面 、鋰離子電池 |
英文關鍵詞: | LiI, Artificial SEI, Lithium Ion Batteries, post anneal |
DOI URL: | https://doi.org/10.6345/NTNU202202844 |
論文種類: | 學術論文 |
相關次數: | 點閱:188 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全固態鋰離子電池相較於傳統液態鋰離子電池具較高之能量密度、安全性與加工便利之特性,被寄予高度期待取代傳統液態鋰離子電池,隨著全固態鋰離子電池發展越趨成熟,其些許問題也如雨後春筍般被發掘,若能改善此些問題並進一步增進全固態鋰離子電池之效能,勢必離商業化取代傳統液態鋰離子電池之目標能更進一步。
本研究致力於提升全固態鋰離子薄膜電池之庫倫效率,增進其製程良率。其結構以雲母片(Mica)為基板,於基板上利用射頻磁控濺鍍技術(RF magnetron sputtering)沉積白金為電流蒐集器,以鋰鈷氧化物(Lithium cobalt oxide: LiCoO2)為陰極材料同樣利用射頻磁控濺鍍技術沉積鋰鈷氧化物薄膜為電池之陰極,於陰極薄膜上利用射頻磁控濺鍍沉積鋰磷氮氧化物(Lithium phosphorus oxynitride: LiPON)薄膜為固態電解質,完成固態電解質製程後利用熱蒸鍍技術將鋰金屬蒸鍍於電解質上做為陽極,即完成全固態鋰離子薄膜電池之組裝。
本研究發現於鋰磷氮氧化物之固態電解質上進行鋰金屬之熱蒸鍍製程時,常使鋰金屬剝落,於本研究中發現對完成鋰磷氮氧化物濺鍍之電池半成品樣品進行熱處理可大幅改善其後續鋰金屬蒸鍍製程之穩定性,提高其良率由25%提升至83%,並以掃描式電子顯微鏡(Scanning Electron Microscopy: SEM)觀測其熱處理後之鋰磷氮氧化物表面及剖面形貌,以x光電子能譜(X-ray Photoelectron Spectroscopy: XPS)觀測其樣品之配位結構,以交流阻抗量測儀(AC impedance meter)進行離子導電度之量測,以能量色散x射線光譜(Energy Dispersive X-ray Spectroscopy: EDS)測定其元素組成,最後以充放電儀進行循環充放電測試,經上述綜合觀察發現將鋰磷氮氧化物進行50°C熱處理60分鐘能使離子導電度達1.1x10-6 S/cm,且循環充放電測試第二圈以後之庫倫效率達95%以上。
本研究亦利用人工固態電解質相間薄膜(Solid Electrolyte Interphase: SEI)之概念,於鋰磷氮氧化物電解質與鋰金屬陽極接面蒸鍍碘化鋰做為人工固態電解質相間薄膜,並進行上述測試,綜合觀察後發現蒸鍍5 nm之碘化鋰於鋰磷氮氧化物與鋰金屬接面能使第一圈庫倫效率從72%提升至82%,且綜合上述兩實驗於鋰磷氮氧化物製成完成後進行熱處理並蒸鍍上5 nm碘化鋰可全面提升其電池之庫倫效率,使第一圈庫倫效率從72%提升至80%且第二圈後庫倫效率平均從85%提升至95%,成功於全面性提升電池之庫倫效率。
All solid-state lithium-ion battery compared to the traditional lithium-ion battery with high energy density, more safety and more easily to processing. That was placed highly anticipated to replace the traditional lithium-ion battery. With the development of all solid-state lithium-ion battery more mature, some of its problems are also mushroomed to be excavated. If these problems can be improved to further enhance the performance of all solid-state lithium-ion battery. It is bound to commercialization to replace the traditional liquid lithium-ion battery target can go further.
This study focuses on improving the efficiency of all-solid-state lithium-ion thin-film batteries. Improve the yield of the process steps. Its structure to mica tablets for the substrate. On the substrate using RF magnetron sputtering technology to deposit platinum as a current collector. Lithium cobalt oxide as a cathode material The same use of RF magnetron sputtering technology deposition of lithium cobalt oxide film as the battery cathode. Deposition of Lithium Phosphorus Oxides on Thin Films by RF Magnetron Sputtering as Solid Electrolytes. After the solid electrolyte was formed, the lithium metal was deposited on the electrolyte by thermal evaporation as an anode. That is, the completion of all solid-state lithium-ion battery assembly
In this study, it was found that the thermal annealing of the semifinished product of lithium-phosphorous nitrogen oxide sputtering can greatly improve the stability of the subsequent lithium metal vapor deposition process. Increase its yield from 25% to 83%. The surface and profile of lithium-phosphorus oxynitride after thermal annealing were observed by scanning electron microscopy. The coordination structure of the samples was observed by x - ray photoelectron spectroscopy. The measurement of ionic conductivity was measured with an AC impedance meter. The elemental composition was determined by Energy-dispersive X-ray spectroscopy. Finally, charge and discharge test with a charge and discharge instrument. According to the above comprehensive observation found that lithium-phosphorus oxynitride 50°C thermal annealing for 60 min ion conductivity can reach 1.1x10-6 S/cm and the cycle charge and discharge test after the second round of the Cullen efficiency of 95% or more.
This study also utilizes the concept of artificial solid electrolyte interfacial thin films. Lithium iodide was deposited on the lithium-phosphorus oxynitride electrolyte with lithium metal anode as an artificial solid electrolyte. And the above test, a comprehensive observation found that the deposition of 5 nm lithium iodide in the lithium-phosphorus oxynitride and lithium metal interface can make the first circle of Coulomb efficiency from 72% to 82%. And the combination of the above two experiments in the lithium phosphorous oxide produced after the completion of thermal annealing and evaporation of 5 nm lithium iodide can fully enhance its battery Coulomb efficiency. So that the first Coulomb efficiency from 72% to 80% and the second lap after the average efficiency of the Coulomb from 85% to 95%.The success of a comprehensive upgrade of the battery Coulomb efficiency.
(1) “Voltaic pile,” Wikipedia, the free encyclopedia. 2017.
(2) M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,” Science, 1976. Jun.192, no. 4244
(3) Armand, M.; Murphy, D. W.; Broadhead, J.; Steele, B. C. H. Materials for Advanced Batteries, Plenum Press, New York1980
(4) Nagaura, T.; Tozawa, K. Prog. Batt. Solar Cells, 1990, 9, 209
(5) Xu, K. Chem. Rev.2004, 104, 4303
(6) Kanehori, K.; Matsumoto, K.; Miyauchi, K.; Kudo, T. Solid St. Ion.1983, 9–10, Part 2, 1445
(7) Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D. J. Power Source1993, 43, 103.
(8) Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D. J. Electrochem. Soc.1996, 143, 3203.
(9) Song, S. W.; Hong, S. J.; Park, H. Y.; Lim, Y. C.; Lee, K. C. Electrochem. Solid St.2009, 12, A159.
(10) Song, S.-W.; Choi, H.; Park, H. Y.; Park, G. B.; Lee, K. C.; Lee, H.-J. J. Power Source2010, 195, 8275.
(11) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull.1980, 15, 783.
(12) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Solid St. Ion.1981, 3–4, 171.
(13) Manthiram, A.; Kim, J. Chem. Mat.1998, 10, 2895.
(14) Wickham, D. G.; Croft, W. J. J. Phys. Chem. Solids1958, 7, 351.
(15) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull.1983, 18, 461.
(16) Wakihara, M. Mat. Sci. Eng. R2001, 33, 109.
(17) Dyer, L. D.; Borie, B. S.; Smith, G. P. J. Am. Chem. Soc.1954, 76, 1499.
(18) Whittingham, M. S. Chem. Rev.2004, 104, 4271.
(19) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc.1997, 144, 1609.
(20) Tarascon, J. M.; Armand, M. Nature2001, 414, 359.
(21) Bates, J. B.; Dudney, N. J.; Neudecker, B. J.; Hart, F. X.; Jun, H. P.; Hackney, S. A. J. Electrochem. Soc.2000, 147, 59.
(22) Y. Yoon, C. Park, J. Kim, and D. Shin, J. Power Sources, 2013,226, 186
(23) Xue, Z.-M.; Zhao, J.-F.; Ding, J.; Chen, C.-H. J. Power Source2010, 195, 853
(24) Goodenough, J. B.; Kim, Y. Chem. Mat.2010, 22, 587.
(25) Wright, P. V. British Polymer Journal1975, 7, 319.
(26) Knauth, P. Solid St. Ion.2009, 180, 911.
(27) André Schwöbel. Solid St. Ion2014,273,51