研究生: |
許以萱 Hsu, Yi-Hsuan |
---|---|
論文名稱: |
探討醣化反應對胰島類澱粉蛋白聚集的影響 Exploring the effect of glycation on the aggregation of islet amyloid polypeptide |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 醣化最終產物 、胰島類澱粉蛋白 、蛋白質聚集 、第二型糖尿病 |
英文關鍵詞: | Advanced glycation end-products, aggregation, islet amyloid polypeptide,, type 2 diabetes |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.074.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:271 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質醣化反應是指環境中醣分子的羰基與蛋白質的胺基進行反應,使胺基酸側鏈醣基化的過程,這種非酵素轉譯後修飾的反應可能會造成蛋白質結構上與穩定性的改變。近年來許多研究指出蛋白質醣化反應在許多疾病中扮演重要的角色,例如: 糖尿病併發症、骨骼相關疾病和神經退行性疾病(阿茲海默症、帕金森氏症)。這些疾病有一共通點即是類澱粉蛋白形成不可溶物堆積在器官周圍或者隨著血液流至身體各部位。在過去幾年中,有許多在體內發現的醣化最終產物其結構已慢慢被檢測與鑑定出來。儘管如此,醣化反應對於蛋白質聚集的影響仍尚未明瞭。目前已有研究指出在超過95%第二型糖尿病患的體內發現了胰島類澱粉蛋白不正常的聚集進而影響胰島功能,使胰島素分泌下降。在本研究中,我們想了解醣化過程對蛋白質聚集的影響及其醣化後的胰島類澱粉蛋白對正常的胰島類澱粉蛋白聚集的影響。因此,藉由胜肽合成儀將醣化修飾後的胺基酸合成到蛋白質序列中,透過這個方式模擬胺基酸在高濃度的血糖中可能發生的改變。研究顯示出醣化後的胰島類澱粉蛋白形成類澱粉蛋白纖維的速度較胰島類澱粉蛋白快速,並生成較高分子量的聚集物。接著透過圓偏光二色性圖譜發現醣化後的胰島類澱粉蛋白的結構從原先不定型結構轉換成摺疊纖維結構的速度也較胰島類澱粉蛋白來的快速。此外,也發現醣化後的胰島類澱粉蛋白可以誘導胰島類澱粉蛋白的聚集,並且透過核誘發實驗推測醣化後的胰島類澱粉蛋白的核種可以做為一個模板促進胰島類澱粉蛋白快速聚集。透過染料滲漏試驗發現醣化後的胰島類澱粉蛋白與胰島類澱粉蛋白皆可與合成的脂囊泡作用推測其亦具有破壞細胞膜的能力。由以上的研究結果我們可以得知醣化的修飾對於胰島類澱粉蛋白有加速形成類澱粉蛋白纖維的能力,並且可能對於第二型糖尿病的進展有很大的影響。
Protein glycation refers to the process in which the carbonyl group of sugars react with the amine group of proteins to form glycated proteins. This non-enzymatic posttranslational modification may change the structure and stability of the protein. In recent years, many studies have pointed out that protein glycation plays an important role in many diseases, such as diabetic complication, bone-related diseases, and neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). One of the common features of these diseases is that the amyloid accumulates around the organ as the insoluble form or through the body via bloodstream. In the past years, the structure of many advanced glycation end-products (AGEs) has been detected and identified in vivo. However, the effect of glycation on protein aggregation is unclear. In addition, many studies have shown that islet amyloid polypeptide (IAPP) was found to form islet amyloid in over 95% of patients with type 2 diabetes (T2D), and it affects the function of islet and results in reducing the secretion of the insulin. In this study, we would like to investigate the influence of glycation on IAPP aggregation. Therefore, we synthesized AGE-IAPP by changing the sturcutre of Lys side chain to commonly identified AGEs, carboxymethylysine (CML), to mimic the consequence of the peptide in the hyperglycemia (high blood sugar) environment. Our study showed that AGE-IAPP formed amyloid fibril faster than IAPP and accompanied with the higher molecular weight aggregates. Next, from circular dichroism spectra, we found that the structure of AGE-IAPP converted from random coil to β-sheet fibril state at a faster rate than IAPP. Furthermore, we found that AGE-IAPP could induce IAPP aggregation. And seeding experiments also indicated the seeds of AGE-IAPP could act as a template to promote IAPP aggregation quickly. Besides, dye leakage assay indicated that both of AGE-IAPP and IAPP have the ability to interact with the synthetic membranes. As the result, we demonstrated that the glycation modification has the ability to accelerate the amyloid formation of IAPP, and may have a great impact on the progression of T2D.
1. Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-66.
2. Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003, 4 (1-2), 21-36.
3. Martin, L.; Latypova, X.; Terro, F., Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 2011, 58 (4), 458-71.
4. Spillantini, M. G.; Goedert, M., Tau pathology and neurodegeneration. Lancet. Neurol. 2013, 12 (6), 609-22.
5. Winner, B.; Jappelli, R.; Maji, S. K.; Desplats, P. A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F. H.; Riek, R., In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (10), 4194-9.
6. Imran, M.; Mahmood, S., An overview of human prion diseases. Virol. J. 2011, 8, 559.
7. Almeida, M. R.; Saraiva, M. J., Clearance of extracellular misfolded proteins in systemic amyloidosis: experience with transthyretin. FEBS Lett. 2012, 586 (18), 2891-6.
8. Ladner, C. L.; Chen, M.; Smith, D. P.; Platt, G. W.; Radford, S. E.; Langen, R., Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J. Biol. Chem. 2010, 285 (22), 17137-47.
9. Fandrich, M., Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J. Mol. Biol. 2012, 421 (4-5), 427-40.
10. Wang, J.; Dickson, D. W.; Trojanowski, J. Q.; Lee, V. M., The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol. 1999, 158 (2), 328-37.
11. Iannuzzi, C.; Carafa, V.; Altucci, L.; Irace, G.; Borriello, M.; Vinciguerra, R.; Sirangelo, I., Glycation of wild-type apomyoglobin induces formation of highly cytotoxic oligomeric species. J. Cell. Physiol. 2015, 230 (11), 2807-20.
12. Jakob-Roetne, R.; Jacobsen, H., Alzheimer's disease: from pathology to therapeutic approaches. Angew. Chem. Int. Ed. Engl. 2009, 48 (17), 3030-59.
13. Iannuzzi, C.; Irace, G.; Sirangelo, I., Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci. 2014, 1, 9.
14. Dobson, C. M., Protein folding and misfolding. Nature 2003, 426 (6968), 884-90.
15. Iannuzzi, C.; Maritato, R.; Irace, G.; Sirangelo, I., Misfolding and amyloid aggregation of apomyoglobin. Int. J. Mol. Sci. 2013, 14 (7), 14287-300.
16. Kien, F.; Ma, H. L.; Bruzzone, R.; Poon, L. L.; Nal, B., Definition of the cellular interactome of the highly pathogenic avian influenza H5N1 virus: identification of human cellular regulators of viral entry, assembly, and egress. Hong Kong Med. J. 2016, 22 (3 Suppl 4), 10-2.
17. Biancalana, M.; Koide, S., Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804 (7), 1405-12.
18. Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D., Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005, 435 (7043), 773-8.
19. Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 2012, 13 (3), 3038-72.
20. Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Abeta) peptides-a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803-12.
21. Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-5.
22. Puchtler, H.; Sweat, F., Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 1965, 13 (8), 693-4.
23. Ryan, T. M.; Caine, J.; Mertens, H. D.; Kirby, N.; Nigro, J.; Breheney, K.; Waddington, L. J.; Streltsov, V. A.; Curtain, C.; Masters, C. L.; Roberts, B. R., Ammonium hydroxide treatment of Abeta produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013, 1, e73.
24. LeVine, H., 3rd, Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993, 2 (3), 404-10.
25. Tu, L. H.; Young, L. M.; Wong, A. G.; Ashcroft, A. E.; Radford, S. E.; Raleigh, D. P., Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 2015, 54 (3), 666-76.
26. Marino, L.; Maya-Aguirre, C. A.; Pauwels, K.; Vilanova, B.; Ortega-Castro, J.; Frau, J.; Donoso, J.; Adrover, M., Glycation of lysozyme by glycolaldehyde provides new mechanistic insights in diabetes-related protein aggregation. ACS Chem. Biol. 2017, 12 (4), 1152-1162.
27. Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 16742-7.
28. Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-22.
29. van der Wel, P. C.; Lewandowski, J. R.; Griffin, R. G., Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J. Am. Chem. Soc. 2007, 129 (16), 5117-30.
30. Westermark, P., Quantitative studies on amyloid in the islets of Langerhans. Ups. J. Med. Sci. 1972, 77 (2), 91-4.
31. Cooper, G. J.; Willis, A. C.; Clark, A.; Turner, R. C.; Sim, R. B.; Reid, K. B., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Nat.l Acad. Sci. U. S. A. 1987, 84 (23), 8628-32.
32. Maloy, A. L.; Longnecker, D. S.; Greenberg, E. R., The relation of islet amyloid to the clinical type of diabetes. Hum. Pathol. 1981, 12 (10), 917-22.
33. Mosselman, S.; Hoppener, J. W.; Zandberg, J.; van Mansfeld, A. D.; Geurts van Kessel, A. H.; Lips, C. J.; Jansz, H. S., Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett. 1988, 239 (2), 227-32.
34. Narita, R.; Toshimori, H.; Nakazato, M.; Kuribayashi, T.; Toshimori, T.; Kawabata, K.; Takahashi, K.; Masukura, S., Islet amyloid polypeptide (IAPP) and pancreatic islet amyloid deposition in diabetic and non-diabetic patients. Diabetes Res. Clin. Pract. 1992, 15 (1), 3-14.
35. Cao, P.; Marek, P.; Noor, H.; Patsalo, V.; Tu, L. H.; Wang, H.; Abedini, A.; Raleigh, D. P., Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett. 2013, 587 (8), 1106-18.
36. Wang, J.; Xu, J.; Finnerty, J.; Furuta, M.; Steiner, D. F.; Verchere, C. B., The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 2001, 50 (3), 534-9.
37. Marzban, L.; Trigo-Gonzalez, G.; Zhu, X.; Rhodes, C. J.; Halban, P. A.; Steiner, D. F.; Verchere, C. B., Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 2004, 53 (1), 141-8.
38. Marzban, L.; Soukhatcheva, G.; Verchere, C. B., Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in beta-cells. Endocrinology 2005, 146 (4), 1808-17.
39. Hull, R. L.; Westermark, G. T.; Westermark, P.; Kahn, S. E., Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89 (8), 3629-43.
40. Young, D. A.; Deems, R. O.; Deacon, R. W.; McIntosh, R. H.; Foley, J. E., Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am. J. Physiol. 1990, 259 (3 Pt 1), E457-61.
41. Scherbaum, W. A., The role of amylin in the physiology of glycemic control. Exp. Clin. Endocrinol. Diabetes 1998, 106 (2), 97-102.
42. Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011, 91 (3), 795-826.
43. Weise, K.; Radovan, D.; Gohlke, A.; Opitz, N.; Winter, R., Interaction of hIAPP with model raft membranes and pancreatic beta-cells: cytotoxicity of hIAPP oligomers. ChemBioChem 2010, 11 (9), 1280-90.
44. Janson, J.; Ashley, R. H.; Harrison, D.; McIntyre, S.; Butler, P. C., The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999, 48 (3), 491-8.
45. Zraika, S.; Hull, R. L.; Verchere, C. B.; Clark, A.; Potter, K. J.; Fraser, P. E.; Raleigh, D. P.; Kahn, S. E., Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 2010, 53 (6), 1046-56.
46. Khemtemourian, L.; Killian, J. A.; Hoppener, J. W.; Engel, M. F., Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, 2008, 421287.
47. Subramanian, S. L.; Hull, R. L.; Zraika, S.; Aston-Mourney, K.; Udayasankar, J.; Kahn, S. E., cJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets. Diabetologia 2012, 55 (1), 166-74.
48. Nishi, M.; Chan, S. J.; Nagamatsu, S.; Bell, G. I.; Steiner, D. F., Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (15), 5738-42.
49. Westermark, G. T.; Falkmer, S.; Steiner, D. F.; Chan, S. J.; Engstrom, U.; Westermark, P., Islet amyloid polypeptide is expressed in the pancreatic islet parenchyma of the teleostean fish, Myoxocephalus (cottus) scorpius. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 133 (1), 119-25.
50. Zhang, X.; Cheng, B.; Gong, H.; Li, C.; Chen, H.; Zheng, L.; Huang, K., Porcine islet amyloid polypeptide fragments are refractory to amyloid formation. FEBS Lett. 2011, 585 (1), 71-7.
51. Morita, S.; Sakagashira, S.; Shimajiri, Y.; Eberhardt, N. L.; Kondo, T.; Kondo, T.; Sanke, T., Autophagy protects against human islet amyloid polypeptide-associated apoptosis. J. Diabetes Investig. 2011, 2 (1), 48-55.
52. Cao, P.; Abedini, A.; Wang, H.; Tu, L. H.; Zhang, X.; Schmidt, A. M.; Raleigh, D. P., Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (48), 19279-84.
53. Costes, S.; Langen, R.; Gurlo, T.; Matveyenko, A. V.; Butler, P. C., beta-Cell failure in type 2 diabetes: a case of asking too much of too few? Diabetes 2013, 62 (2), 327-35.
54. Nguyen, P. T.; Zottig, X.; Sebastiao, M.; Bourgault, S., Role of site-specific asparagine deamidation in islet amyloid polypeptide amyloidogenesis: key contributions of residues 14 and 21. Biochemistry 2017, 56 (29), 3808-3817.
55. Tu, L. H.; Raleigh, D. P., Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. Biochemistry 2013, 52 (2), 333-42.
56. Ribet, D.; Cossart, P., Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010, 584 (13), 2748-58.
57. Ulrich, P.; Cerami, A., Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 2001, 56, 1-21.
58. Ahmed, N., Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67 (1), 3-21.
59. Singh, V. P.; Bali, A.; Singh, N.; Jaggi, A. S., Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18 (1), 1-14.
60. Delgado-Andrade, C., Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct. 2016, 7 (1), 46-57.
61. Vitek, M. P.; Bhattacharya, K.; Glendening, J. M.; Stopa, E.; Vlassara, H.; Bucala, R.; Manogue, K.; Cerami, A., Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (11), 4766-70.
62. Munch, G.; Mayer, S.; Michaelis, J.; Hipkiss, A. R.; Riederer, P.; Muller, R.; Neumann, A.; Schinzel, R.; Cunningham, A. M., Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim. Biophys. Acta 1997, 1360 (1), 17-29.
63. Fernandez-Busquets, X.; Ponce, J.; Bravo, R.; Arimon, M.; Martianez, T.; Gella, A.; Cladera, J.; Durany, N., Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate. Curr. Alzheimer Res. 2010, 7 (5), 428-38.
64. Fazili, N. A.; Naeem, A., In vitro hyperglycemic condition facilitated the aggregation of lysozyme via the passage through a molten globule state. Cell Biochem. Biophys. 2013, 66 (2), 265-75.
65. Oliveira, L. M.; Gomes, R. A.; Yang, D.; Dennison, S. R.; Familia, C.; Lages, A.; Coelho, A. V.; Murphy, R. M.; Phoenix, D. A.; Quintas, A., Insights into the molecular mechanism of protein native-like aggregation upon glycation. Biochim. Biophys. Acta 2013, 1834 (6), 1010-22.
66. Iannuzzi, C.; Maritato, R.; Irace, G.; Sirangelo, I., Glycation accelerates fibrillization of the amyloidogenic W7FW14F apomyoglobin. PLoS One 2013, 8 (12), e80768.
67. Kong, F. L.; Cheng, W.; Chen, J.; Liang, Y., D-Ribose glycates beta(2)-microglobulin to form aggregates with high cytotoxicity through a ROS-mediated pathway. Chem. Biol. Interact. 2011, 194 (1), 69-78.
68. Lee, D.; Park, C. W.; Paik, S. R.; Choi, K. Y., The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochim. Biophys. Acta 2009, 1794 (3), 421-30.
69. Alavi, P.; Yousefi, R.; Amirghofran, S.; Karbalaei-Heidari, H. R.; Moosavi-Movahedi, A. A., Structural analysis and aggregation propensity of reduced and nonreduced glycated insulin adducts. Appl. Biochem. Biotechnol. 2013, 170 (3), 623-38.
70. Oliveira, L. M.; Lages, A.; Gomes, R. A.; Neves, H.; Familia, C.; Coelho, A. V.; Quintas, A., Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem. 2011, 12, 41.
71. Kapurniotu, A.; Bernhagen, J.; Greenfield, N.; Al-Abed, Y.; Teichberg, S.; Frank, R. W.; Voelter, W.; Bucala, R., Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur. J. Biochem. 1998, 251 (1-2), 208-16.
72.
https://www.researchgate.net/post/What_does_CD_spectra_at_230nm_tell_you_about
73. http://keywordsuggest.org/gallery/874278.html
74. Rahimi, F.; Maiti, P.; Bitan, G., Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp. 2009, (23).
75. Cao, P.; Raleigh, D. P., In vitro studies of membrane permeability induced by amyloidogenic polypeptides using large unilamellar vesicles. Methods Mol. Biol. 2016, 1345, 283-90.
76. Liu, G. C.; Chen, B. P.; Ye, N. T.; Wang, C. H.; Chen, W.; Lee, H. M.; Chan, S. I.; Huang, J. J., Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem. Commun. (Camb) 2013, 49 (95), 11212-4.
77. Ma, Z.; Westermark, P.; Westermark, G. T., Amyloid in human islets of Langerhans: immunologic evidence that islet amyloid polypeptide is modified in amyloidogenesis. Pancreas 2000, 21 (2), 212-8.
78. Lopes, D. H.; Attar, A.; Nair, G.; Hayden, E. Y.; Du, Z.; McDaniel, K.; Dutt, S.; Bravo-Rodriguez, K.; Mittal, S.; Klarner, F. G.; Wang, C.; Sanchez-Garcia, E.; Schrader, T.; Bitan, G., Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem. Biol. 2015, 10 (6), 1555-69.
79. Abedini, A.; Raleigh, D. P., The role of His-18 in amyloid formation by human islet amyloid polypeptide. Biochemistry 2005, 44 (49), 16284-91.
80. Marek, P. J.; Patsalo, V.; Green, D. F.; Raleigh, D. P., Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 2012, 51 (43), 8478-90.
81. Wong, A. G.; Wu, C.; Hannaberry, E.; Watson, M. D.; Shea, J. E.; Raleigh, D. P., Analysis of the amyloidogenic potential of pufferfish (Takifugu rubripes) islet amyloid polypeptide highlights the limitations of thioflavin-T assays and the difficulties in defining amyloidogenicity. Biochemistry 2016, 55 (3), 510-8.
82. Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (24), E3095-103.
83. Micsonai, A.; Wien, F.; Bulyaki, E.; Kun, J.; Moussong, E.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46 (W1), W315-W322.
84. Cao, P.; Raleigh, D. P., Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 2012, 51 (13), 2670-83.
85. Cao, D.; Zhang, Y.; Zhang, H.; Zhong, L.; Qian, X., Systematic characterization of the covalent interactions between (-)-epigallocatechin gallate and peptides under physiological conditions by mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23 (8), 1147-57.