簡易檢索 / 詳目顯示

研究生: 黃家慶
Huang, Chia-Cing
論文名稱: 石墨烯奈米流體應用於電子晶片散熱之研究
Research on The Application of Graphene Nanofluids to Heat Dissipation for Electronic Chips
指導教授: 鄧敦平
Teng, Tun-Ping
口試委員: 尤尚邦
Yu, Shang-Pang
程金保
Cheng, Chin-Pao
鄧敦平
Teng, Tun-Ping
口試日期: 2022/06/15
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 分散劑石墨烯奈米流體熱交換量雷諾數水冷式系統
英文關鍵詞: Dispersant, Graphene nanofluid (GNNF), Heat exchange capacity, Reynolds number (Re), Water-cooled system
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200838
論文種類: 學術論文
相關次數: 點閱:96下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究因應電子晶片散熱需求越來越高而開發石墨烯奈米流體(GNNF)替代水作為水冷式系統的工作流體以提供更佳的散熱性能。本研究首先利用球磨機降低石墨烯(GN)的粒徑並且將其配製為石墨烯奈米流體(GNNF),並使用十二烷基硫酸鈉(SDS)做為分散劑,且SDS與GN濃度呈現1:2時會使GNNF具有最佳的穩定性。此外,諸如GNNF的密度、黏度、比熱與熱傳導係數等基本性質均進行量測以評估GNNF在熱交換領域應用的可行性。最後實際將GNNF應用於中央處理器(CPU)水冷系統進行散熱性能實驗以評估GNNF的熱交換性能。散熱性能實驗的實驗參數分別為四個GNNF濃度(0、0.05、0.1、0.2 wt%)、三個不同的加熱瓦數(50、100、150 W)以及三個不同的流量(2、3.5、5 LPM)。研究結果顯示環境溫度25℃時,GNNF具有最佳散熱能力的濃度為0.05 wt%,並且在高流量與低瓦數的參數下有最高的熱交換量提升率。0.05 wt% GNNF在50 W/5 LPM的熱交換量提升率比水高約13.9%。在環境溫度32℃時,GNNF具有最佳散熱能力的濃度為0.1 wt%。0.1 wt% GNNF在50 W/5 LPM的熱交換量提升率比水高約63.1%。

    In response to the increasing heat dissipation demand of electronic chips, this study developed graphene nanofluid (GNNF) to replace water as the working fluid of a water-cooled system and provide better heat dissipation performance. In this study, the particle size of graphene (GN) was reduced by a ball miller and formulated into graphene nanofluid (GNNF), and sodium dodecyl sulfate (SDS) was used as a dispersant. The concentrations of SDS and GN showed that 1:2 would give GNNF the best stability. In addition, fundamental characteristics, such as density, viscosity, specific heat, and thermal conductivity of GNNF, were measured to evaluate the feasibility of GNNF application in heat exchange. Finally, GNNF was applied to the water-cooled system of the central processing unit (CPU) to conduct heat dissipation performance experiments in order to evaluate the heat exchange performance of GNNF. The experimental parameters of the heat dissipation performance experiment are four GNNF concentrations (0, 0.05, 0.1, and 0.2 wt%), three heating powers (50, 100, 150 W), and three flow rates (2, 3.5, and 5 LPM). The results show that when the ambient temperature is at 25°C, the concentration of GNNF with the best heat dissipation capacity is 0.05 wt%, having the highest increasing ratio of heat exchange under the parameters of high flow rate and low heating power. The increasing heat exchange ratio for 0.05 wt% GNNF at 50 W/5 LPM is about 13.9% higher than that of water. At an ambient temperature of 32°C, the concentration of GNNF with the best heat dissipation capability is 0.1 wt%. The increasing heat exchange ratio for 0.1 wt% GNNF at 50 W/5 LPM is about 63.1% higher than that of water. Further, 0.05 wt% and 0.1 wt% GNNF can improve the system efficiency constant (SEF) by 18.2% and 59.1% at the ambient temperature of 25°C and 32°C, respectively.

    謝辭 i 摘要 ii Abstract iii 目次 v 表次 vii 圖次 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 1.4 論文架構 4 1.5 文獻回顧 5 第二章 理論分析與文獻探討 7 2.1 奈米材料與奈米流體 7 2.2 奈米流體的製備 8 2.3奈米流體的穩定性 11 2.4奈米流體之熱交換應用 14 2.5奈米流體之基本性質 15 2.6中央處理器之熱設計功耗 17 第三章 實驗設計 19 3.1 實驗系統 20 3.2實驗方法與步驟 26 3.3實驗流體配製 27 3.4基本性質量測實驗 31 3.5水冷熱交換實驗 36 3.6數據分析 36 3.7不確定性分析 39 第四章 結果與討論 40 4.1 奈米流體配製結果 40 4.2 基本性質量測結果 48 4.3熱流性質結果分析 56 4.4水冷熱交換實驗結果 59 第五章 結論與建議 76 5.1 結論 76 5.2建議 78 參考文獻 80 符號釋義 88 作者簡介 90

    [1] W. Li, Y. Wang, and C. Zou, “ Stability, thermal conductivity and supercooling behavior of novel β-CD-TiO2-Ag cooling medium-based nanofluids for eco-friendly cold thermal energy storage,” J. Clean. Prod., vol. 259, pp. 121162, 2020, doi: 10. 1016/ j. jclepro. 2020. 121162.
    [2] T. Balaji et al., “ Enhanced heat transfer characteristics of water based hybrid nanofluids with graphene nanoplatelets and multi walled carbon nanotubes,” Powder Technol., vol. 394, pp. 1141–1157, 2021, doi: 10.1016/ j. powtec. 2021. 09. 014.
    [3] V. Selvaraj and H. Krishnan, “ Graphene-silver alloyed quantum dots nanofluid: Synthesis and application in the cooling of a simulated electronic system,” Appl. Therm. Eng., vol. 187, no. June 2020, pp. 116580, 2021, doi: 10.1016/ j. applthermaleng. 2021. 116580.
    [4] N. Zheng et al., “ The effects of ultrasonication power and time on the dispersion stability of few-layer graphene nanofluids under the constant ultrasonic energy consumption condition,” Ultrason. Sonochem., vol. 80, pp. 105816, 2021, doi: 10. 1016/ j. ultsonch. 2021. 105816.
    [5] C. J. Ho et al., “ Experimental study on cooling performance of water-based hybrid nanofluid with PCM and graphene nanoparticles,” Case Stud. Therm. Eng., vol. 33, no. January, pp. 101939, 2022, doi: 10. 1016/ j. csite. 2022. 101939.
    [6] S. Dayou et al., “ Comparison of heat transfer performance of water-based graphene nanoplatelet- and multi-walled carbon nanotube-nanofluids in a concentric tube heat exchanger,” Diam. Relat. Mater., vol. 125, no. March, pp. 108976, 2022, doi: 10. 1016/ j. diamond. 2022. 108976.
    [7] J. Zhou et al., “ Comprehensive evaluation of graphene/R141b nanofluids enhanced heat transfer performance of minichannel heat sinks,” Powder Technol., vol. 397, pp. 116997, 2022, doi: 10. 1016/ j. powtec. 2021. 11. 041.
    [8] Y. Gao et al., “ Numerical investigation of aqueous graphene nanofluid ice slurry passing through a horizontal circular pipe: Heat transfer and fluid flow characteristics,” Int. Commun. Heat Mass Transf., vol. 134, no. April, pp. 106022, 2022, doi: 10. 1016/ j. icheatmasstransfer. 2022. 106022.
    [9] B. C. Brodie, “ on the atomic weight of graphit,” 1858.
    [10] K. S. Novoselov et al., “ Materials and Methods: Electric field effect in atomically thin carbon films.,” Science, 2004.
    [11] M. Burghard, “ Electronic and vibrational properties of chemically modified single- wall carbon nanotubes,” Surface Science Reports, 2005, doi: 10. 1016/ j. surfrep. 2005. 07. 001.
    [12] M. F. L. DeVolder et al., “ Carbon nanotubes: Present and future commercial applications,” Scienc, 2013, doi: 10. 1126/ science. 1222453.
    [13] E.V. Castro et al., “ Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett., 2007, doi: 10. 1103/ PhysRevLett. 99. 216802.
    [14] A. K. Geim and K. S. Novoselov, “ The rise of graphene,” Nat. Mater., 2007, doi: 10. 1038/ nmat1849.
    [15] W. Yu and H. Xie, “ A review on nanofluids: Preparation, stability mechanisms, and applications,” Journal of Nanomaterials, 2012, doi: 10. 1155/ 2012/ 435873.
    [16] G. Dombek, Z. Nadolny, and P. Przybylek, “ The study of thermal properties of mineral oil and synthetic ester modified by nanoparticles TiO2 and C60,” 2014, doi: 10. 1109/ ICHVE. 2014. 7035466.
    [17] M. V. Avdeev et al., “ On the magnetic structure of magnetite/ oleic acid/ benzene ferrofluids by small-angle neutron scattering,” J. Magn. Magn. Mater., 2004, doi: 10. 1016/ j. jmmm. 2003. 08. 032.
    [18] R. Taylor et al., “ Small particles, big impacts: A review of the diverse applications of nanofluids,” Journal of Applied Physics. 2013, doi: 10. 1063/ 1. 4754271.
    [19] A. Ghadimi et al., “ A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transf., 2011, doi: 10. 1016/ j. ijheatmasstransfer. 2011. 04. 014.
    [20] S. Chakraborty and P. K. Panigrahi, “ Stability of nanofluid: A review,” Applied Thermal Engineering, 2020, doi: 10. 1016/ j. applthermaleng. 2020. 115259.
    [21] O. Mahian et al., “ Recent advances in modeling and simulation of nanofluid flows- Part I: Fundamentals and theory,” Physics Reports, 2019, doi: 10. 1016/ j. physrep. 2018. 11. 004.
    [22] F. Yu et al., “ Dispersion stability of thermal nanofluids,” Progress in Natural Science: Materials International, 2017, doi: 10. 1016/ j. pnsc. 2017. 08. 010.
    [23] N. Ali et al., “ A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties,” Journal of Nanomaterials, 2018, doi: 10. 1155/ 2018/ 6978130.
    [24] S. Umar et al., “ Investigation of the effect of pH adjustment on the stability of nanofluid,” 2018, doi: 10. 1063/ 1. 5066987.
    [25] S. Ravindran et al., “ Understanding how the properties of whey protein stabilized emulsions depend on pH, ionic strength and calcium concentration, by mapping environmental conditions to zeta potential,” Food Hydrocoll., 2018, doi: 10. 1016/ j. foodhyd. 2017. 12. 003.
    [26] S. Mukherjee et al., “ Stability of Heat Transfer Nanofluids – A Review,” ChemBioEng Reviews, 2018, doi: 10. 1002/ cben. 201800008.
    [27] E. Piacenza et al., “ Stability of biogenic metal( loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures,” Critical Reviews in Biotechnology, 2018, doi: 10. 1080/ 07388551. 2018. 1440525.
    [28] K. Manojkumar et al., “A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly( ionic liquids),” Journal of Nanoparticle Research, 2016, doi: 10. 1007/ s11051- 016- 3409- y.
    [29] A. Amiri et al., “ Pool boiling heat transfer of CNT/ water nanofluids,” Appl. Therm. Eng., 2014, doi: 10. 1016/ j. applthermaleng. 2014. 06. 064.
    [30] J. Tavares and S. Coulombe, “ Dual plasma synthesis and characterization of a stable copper- ethylene glycol nanofluid,” Powder Technol., 2011, doi: 10. 1016/ j. powtec. 2011. 03. 006.
    [31] R. M. Mostafizur et al., “ Effect of surfactant on stability, thermal conductivity, and viscosity of aluminium oxide– methanol nanofluids for heat transfer applications,” Therm. Sci. Eng. Prog., pp. 101302, Apr. 2022, doi: 10. 1016/ J. TSEP. 2022. 101302.
    [32] J. Dong et al., “ Experimental investigation and application of stability and thermal characteristics of SiO2- ethylene-glycol/water nanofluids,” Int. J. Therm. Sci., vol. 176, pp. 107533, Jun. 2022, doi: 10. 1016/ J. IJTHERMALSCI. 2022. 107533.
    [33] I. A. Zakaria et al., “ Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application,” Appl. Therm. Eng., vol. 210, pp. 118369, Jun. 2022, doi: 10. 1016/ J. APPLTHERMALENG. 2022. 118369.
    [34] A. Shibata et al., “ Heat transfer enhancement of graphene nanofluid manufactured from graphite sheet,” Mater. Today Proc., May. 2022, doi: 10. 1016/ J. MATPR. 2022. 05. 288.
    [35] T. Venkatesh et al., “ Performance enhancement of hybrid solar PV/ T system with graphene based nanofluids,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105794, Jan. 2022, doi: 10. 1016/ J. ICHEATMASSTRANSFER. 2021. 105794.
    [36] L. Qiu et al., “ A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids,” Physics Reports, 2020, doi: 10. 1016/ j. physrep. 2019. 12. 001.
    [37] K. Khanafer and K. Vafai, “ A critical synthesis of thermophysical characteristics of nanofluids,” Int. J. Heat Mass Transf., 2011, doi: 10. 1016/ j. ijheatmasstransfer. 2011. 04. 048.
    [38] Y. Xuan and W. Roetzel, “ Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., 2000, doi: 10. 1016/ S0017- 9310( 99)00369- 5.
    [39] M. Sharifpur et al., “ A new model for density of nanofluids including nanolayer,” Int. Commun. Heat Mass Transf., 2016, doi: 10. 1016/ j. icheatmasstransfer. 2016. 09. 010.
    [40] Y. R. Sekhar and K.V. Sharma, “ Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations,” J. Exp. Nanosci., 2015, doi: 10. 1080/ 17458080. 2013. 796595.
    [41] R. S. Vajjha and D. K. Das, “ A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power,” Int. J. Heat Mass Transf., 2012, doi: 10. 1016/ j. ijheatmasstransfer. 2012. 03. 048.
    [42] D. Cabaleiro et al., “ Specific heat of metal oxide nanofluids at high concentrations for heat transfer,” Int. J. Heat Mass Transf., 2015, doi: 10. 1016/ j. ijheatmasstransfer. 2015. 04. 107.
    [43] R. Hentschke, “ On the specific heat capacity enhancement in nanofluids,” Nanoscale Res. Lett., 2016, doi: 10. 1186/ s11671- 015- 1188- 5.
    [44] E. C. Okonkwo et al., “ An updated review of nanofluids in various heat transfer devices,” Journal of Thermal Analysis and Calorimetry, 2021, doi: 10. 1007/ s10973- 020- 09760- 2.
    [45] L. S. Sundar et al., “ Empirical and theoretical correlations on viscosity of nanofluids: A review,” Renewable and Sustainable Energy Reviews, 2013, doi: 10. 1016/ j. rser. 2013. 04. 003.
    [46] A. Sobti and R. K. Wanchoo, “ Thermal conductivity of nanofluids,” Mater. Sci. Forum, 2013, doi: 10. 4028/ www. scientific. net/ MSF. 757. 111.
    [47] M. M. Tawfik, “ Experimental studies of nanofluid thermal conductivity enhancement and applications: A review,” Renewable and Sustainable Energy Reviews, 2017, doi: 10. 1016/ j. rser. 2016. 11. 111.
    [48] M. U. Sajid and H. M. Ali, “ Thermal conductivity of hybrid nanofluids: A critical review,” International Journal of Heat and Mass Transfer, 2018, doi: 10. 1016/ j. ijheatmasstransfer. 2018. 05. 021.
    [49] F. Iacobazzi et al., “ A critical analysis of clustering phenomenon in Al2O3 nanofluids,” J. Therm. Anal. Calorim., 2019, doi: 10. 1007/ s10973- 018- 7099- 9.
    [50] I. H. Rizvi et al., “ Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano- layer,” Heat Mass Transf. und Stoffuebertragung, 2013, doi: 10. 1007/ s00231- 013- 1117- z.
    [51]各品牌cpu規格。取自https://www.intel.com.tw/content/www/tw/zh/products/details/processors/core.html, https://www.amd.com/zh-hant/products/processors-desktop.

    下載圖示
    QR CODE