簡易檢索 / 詳目顯示

研究生: 王怡雯
Wang, I-Wen
論文名稱: 5052鋁合金與ABS塑膠摻雜炭化稻殼粉末異質接合之特性研究
Dissimilar joining of 5052 aluminum alloy and polymer with the composite material of ABS polymer doping carbonized rice husk powder
指導教授: 王怡雯
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 5052鋁合金ABS塑膠異質接合超音波銲接稻殼灰二氧化矽
英文關鍵詞: 5052 aluminum alloy, ABS plastic, heterojunction, ultrasonic welding, rice husk ash, silicon dioxide
DOI URL: https://doi.org/10.6345/NTNU202203076
論文種類: 學術論文
相關次數: 點閱:176下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今許多電子用品、3C產品、自行車、航太工業等,利用金屬與塑膠異質接合形成複合式材料,在各領域皆被廣泛應用。此複合材料可同時具有輕量化與高強度之優點,且在設計彈性上各得以讓不同材料之特性充分發揮。塑膠與金屬之接合件,兼具塑膠材料的質量輕巧與抗化學侵蝕之特性,以及金屬之延性與強度。
    本研究將5052鋁合金與ABS塑膠,以超音波銲接方式進行異質搭接,並探討其接合品質。為了使兩種異質材料得以順利接合,本研究針對鋁合金表面及塑膠表面進行粗化,並在兩銲接區域內增加不同比例摻雜物後,再利用超音波銲接使兩者產生接合作用。鋁合金表面粗化部分先是以砂紙磨除表面氧化層,再利用CNC銑床鑽削直徑為1 mm、深度2 mm之微型陣列孔洞,此方式可以產生足夠的孔深與孔徑使熔融塑膠進入其中。
    在設定固定孔洞數條件後,將研究重點擺在不同摻雜物及銲接時間長短對強度之影響。經由拉伸試驗後發現,隨孔洞數增加及搭配適合之銲接參數,可有效提升接合件的強度。而使用炭化稻殼與ABS粉末摻雜於異質界面亦可提升接合效果。其中以ABS粉末與炭化稻殼重量比90 wt%:10 wt%、總重量為0.2 g摻雜之效果為最佳,所獲得接合件之最大平均荷重為4390 N。

    In recent years, the use of metal and plastic dissimilar bonding to form composite materials are widely used in various electronic products fields. This composite material have both of the advantages of lightweight and high strength, which can make the full development of the characteristics of the material in the various application. This plastic and metal dissimilar joint has the lightweight property and chemical etching resistance of the plastic, as well as the ductility and strength of the metal.
    In this study, the ultrasonic welding method was used for dissimilar bonding 5052 aluminum alloy and ABS plastic. In order to make the two dissimilar materials to be joined successfully, the surface of aluminum alloy and plastic have been coarsened before bonding. The dissimilar joining has been made by ultrasonic welding with doping different proportion dopants in the interface of welding zones. The CNC milling machine was used to make the roughened surface of aluminum alloy by drilling micro-array of holes with 1 mm in diameter and 2 mm in depth. This micro-array of holes can generate enough space to allow the molten plastic flow into the holes.
    This study have focused on the tensile property of dissimilar joint which influenced by different proportions of dopants and welding time with fixed hole number. Experimental results shows that the bonding strength can be improved by increasing the number of holes and suitable welding parameters. The use of carbonized rice husk and ABS mixing powder in the interface can also enhance the bonding property of joints. The joint has the maximum load of 4390 N when the weight ratio of ABS powder to carbonized rice husk is 9 1 and the total weight of powder is 0.2 g.

    目錄 摘要 i Abstract ii 誌謝 iii 表目錄 viii 圖目錄 ix 第一章 前言 1 第二章 文獻回顧 4 2.1 材料特性簡介 4 2.1.1 5052 Al-Mg系合金特性 4 2.1.2 ABS塑膠 5 2.2 接合理論與技術 5 2.2.1接合力 5 2.2.2機械作用力理論(Mechanical Interlocking) 6 2.3金屬與塑膠接合成型技術 7 2.3.1黏附接合(Adhesive bonding) 7 2.3.2鉚接接合(Riveting) 8 2.3.3卡溝接合(Snap joint) 8 2.3.4螺絲鎖緊(Screw) 9 2.3.5嵌入式射出成形(Insert molding) 9 2.3.6金屬與塑膠奈米結合技術(NMT) 10 2.3.7 AMALPHA技術 12 2.4超音波銲接之異質接合 13 2.4.1 Mg-Al和Mg高強度低合金(HSLA)鋼超音波點銲 13 2.4.2 鋁板與塑膠複合材料之超音波接合 14 2.5 綠色複合材料之探討 19 2.5.1 天然植物纖維/環氧樹脂綠色複合材料 19 2.5.2天然纖維增強聚合物複合材料 20 2.5.3稻殼之農業廢棄物再利用之研究 20 2.5.4稻殼灰燃燒過程之化學與形態演變 21 2.5.5稻殼灰對於增強AlSi10Mg鋁合金機械性能之影響 22 2.5.6從稻殼中提取二氧化矽之方法 24 2.6 溫度量測 29 第三章 實驗步驟與方法 33 3.1實驗架構 33 3.2 實驗材料與設備 34 3.2.1 5052鋁合金基板 34 3.2.2 ABS試片 35 3.2.3 超音波銲接 35 3.2.4 萬能拉伸試驗機 38 3.3摻雜物質 38 3.3.1 ABS粉末 38 3.3.2 炭化稻殼粉末 39 3.3.3稻殼灰粉末 41 3.3.4 ABS粉末、炭化稻殼與稻殼灰尺寸量測 41 3.4摻雜條件 43 3.5性質試驗與分析 45 3.5.1 拉伸試驗 45 3.5.2 溫度模擬分析 45 3.5.3 銲接溫度實際量測 46 第四章 結果與討論 47 4.1超音波異質銲接溫度分析 47 4.1.1有限元素模擬分析 47 4.1.2熱電偶實際量測 55 4.2炭化稻殼及稻殼灰分析 58 4.2.1市售炭化稻殼XRD成分分析 58 4.2.2市售炭化稻殼EDS成分分析 59 4.2.3不同溫度燃燒之稻殼灰 61 4.3拉伸試驗分析 65 4.3.1 ABS 同質性接合 65 4.3.2 拉伸試驗斷裂形態分析 65 4.3.3 固定銲接時間、改變摻雜量之拉伸試驗結果 68 4.3.4 固定摻雜量、改變銲接時間之拉伸試驗結果 69 4.3.5 變更孔洞數及摻雜比例在不同銲接時間下之拉伸試驗結果 70 4.3.6固定孔洞數、變更摻雜比例在不同銲接時間下之拉伸試驗結果 72 4.3.7固定摻雜比例、變化孔數與孔距,在不同銲接時間下之拉伸試驗結果 73 4.4銲接斷面觀察 74 4.5接合剖面微觀分析 76 4.5.1光學顯微鏡剖面微觀分析 76 4.5.2掃描式電子顯微鏡剖面微觀分析 77 第五章 結論 78 參考文獻 80

    1. 鍾權任,經電化學處理鋁合金1050與射出成形塑料接合效果之探討,國立交通大學機械工程系所碩士論文,新竹,2012年。
    2. 劉剛瑋,鋁鎂合金經表面處理後與塑料結合之研究,臺北科技大學資源工程研究所碩士論文,臺北,2012年。
    3. 林治溱,經微弧氧化表面處理之5052鋁合金對PBT高分子塑料接合強度影響之研究,國立交通大學機械工程系所碩士論文,新竹,2013年。
    4. V. Della, I. Kühn and D. Hotza, “Rice husk ash as an alternate source for active silica production”, Materials Letters, Vol.57, pp.818–821, 2002.
    5. 維信鋁合金有限公司 http://www.wsal.com.tw/ugC_Support5052.asp
    6. 資訊中心-ABS塑膠Learning Center http://www.botfeeder.com.tw/abs_material.htm
    7. 葉陳懋,經雷射表面處理之5052鋁合金對ABS高分子塑料接合強度影響之研究,國立交通大學機械工程系所碩士論文,新竹,2014年。
    8.李楨育,IP67防水平板電腦設計研究,國立中央大學機械工程研究所碩士論文,2011年。
    9. 姜志華,「輕金屬結構膠合技術」,科學發展,第400期,24-29頁,民國95年。
    10. J.J. Bikerman, “The fundamentals of tackiness and adhesion”, Journal of Colloid Science, Vol.2, Issue 1, pp.163-175, February 1947.
    11. N. A. De Bruyne, The Extent of Contact Between Glue and Adherend, No.168, The Technical Service Department, England, 1956.
    12. P. Kah, R. Suoranta, J. Martikainen, and C. Magnus, “Techniques for joining dissimilar materials: metals and polymers”, Reviews on Advanced Materials Science, pp.152-164, 2014.
    13. 王啟龍,應用於電子產品外殼之5052鋁合金與ABS塑膠超音波銲接技術之研究,國立交通大學機械工程系所碩士論文,新竹,2014年。
    14. C. Rans and P.V. Straznicky, “Riveting Process Induced Residual Stresses Around Solid Rivets in Mechanical Joints”, Journal of Aircraft, Vol.44, No.1, pp.323-329, 2007.
    15. Snap Fit Design
    http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf
    16. 葉人瑜,嵌入式射出成型製品殘留應力之研究與改善,國立交通大學機械工程系所碩士論文,新竹,2010年。
    17. 日本Taisei Plas株式會社
    www.sentronic.com.tw/download/Sentronic-NMT.pdf
    18. C.O. Annerfors and S. Petersson, “Nano molding technology on cosmetic aluminum parts in mobile phones”, Mechanical Engineering Lund University, pp.1-116, August 2007.
    19.日本MEC公司, 2014, http://www.mec-co.com/en/surf_create/amalpha.html
    20. V.K. Patel, D.L. Chen and S.D. Bhole, “Dissimilar ultrasonic spot welding of Mg-Al and Mg-high strength low alloy steel”, Theoretical and Applied Mechanics Letters, Vol.4, 2014.
    21. 哈專利-蘋果與Android陣營最新專利及相關熱門資訊分享
    http://hotpatent.blogspot.tw/2012/04/blog-post.html
    22. 賴耿陽,「超音波工學」,復文書局,131-150頁,民國94年。
    23. R.J. Wise, “Ultrasonic Welding of PES to aluminium alloy”, Proceedings of
    the 54th Annual Technical Conference, Chicago, pp.1203-7, 1996.
    24. S. Krüger, G. Wagner, and D. Eifler, “Ultrasonic welding of metal/Composite Joints”, Advanced engineering materials, Vol.6, No.3, pp.157-159, 2004.
    25. F. Balle, G. Wagner and D. Eifler, “Ultrasonic Metal Welding of Aluminium Sheets to Carbon Fibre Reinforced Thermoplastic Composites”, Advanced engineering materials, Vol.11, pp.35-39, 2009.
    26. 蔡季軒,天然植物纖維/環氧樹脂綠色複合材料之探討,朝陽科技大學應用化學所碩士論文,臺中,2010年。
    27. P. Wambua, J. Ivens and I. Verpoest, “Natural fibres: can they replace glass in fibre reinforced plastics?”, Composites science and technology, Vol.63, pp.1259-1264, 2003.
    28. E. Omrani, P.L. Menezes and P.K. Rohatgi, “State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world”, Engineering Science and Technology, Vol.19, pp.717–736, 2016.
    29. Y. Tokiwa, B.P. Calabia, C.U. Ugwu and S. Aiba, “Biodegradability of Plastics”, International Journal of Molecular Sciences, Vol.10, pp.3723-3742, 2009.
    30. V.K. Thakur, M.K. Thakur, R.K. Gupta, “Review: raw natural fiber-based polymer composites”, International Journal of Polymer Analysis and Characterization, Vol.19, pp.256–271, 2014.
    31. H. Ku, H. Wang, N. Pattarachaiyakoop and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites”, Compos Part B: Engineering, Vol.42, pp.856–873, 2011.
    32. B. Barari, T. Ellingham, I. Qamhia, K. Pillai, R. El-Hajjar and L.-S. Turng and R. Sabo, “Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process”, Compos Part B: Engineering, Vol.84, pp.277–284, 2016.
    33. C. Unterweger, O. Brüggemann and C. Fürst, “Synthetic fibers and thermoplastic short fiber reinforced polymers: properties and characterization”, Polym Compos, Vol.35, pp.227–236, 2014.
    34. T.F.A Santos, G.C. Vasconcelos, W.A. de Souza, M.L. Costa and E.C. Botelho, “Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation”, Mater Design (1980-2015), Vol.65, pp.780–788, 2015.
    35. X.-Q. Pei, R. Bennewitz and A.K. Schlarb, “Mechanisms of friction and wear reduction by carbon fiber reinforcement of PEEK”, Tribology Letter, Vol.58, pp.1–10, 2015.
    36. S. Bahadur, Y. Zheng, “Mechanical and tribological behavior of polyester reinforced with short glass fibers, Wear”, Vol.137, pp.251–266, 1990.
    37. S.W. Zhang, “State-of-the-art of polymer tribology”, Tribology International, Vol.31, pp.49–60, 1998.
    38. K. Friedrich, Z. Zhang and A.K. Schlarb, “Effects of various fillers on the sliding wear of polymer composites”, Composites Science and Technology, Vol.65, pp.2329–2343, 2005.
    39. D.L. Burris, B. Boesl, G.R. Bourne and W.G. Sawyer, “Polymeric nanocomposites for tribological applications”, Macromolecular Materials and Engineering, Vol.292, pp.387–402, 2007.
    40. Y. Zhang, S. Zhu, Y. Liu, B. Yang and X. Wang, “The mechanical and tribological properties of nitric acid-treated carbon fiber-reinforced polyoxymethylene composites”, Applied Polymer Science, Vol.132, 2015.
    41. V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park and D. Hui, “A short review on basalt fiber reinforced polymer composites”, Composites Part B: Engineering, Vol.73, pp.166–180, 2015.
    42. E. Omrani, B. Barari, A.D. Moghadam, P.K. Rohatgi and K.M. Pillai, “Mechanical and tribological properties of self-lubricating bio-based carbon-fabric epoxy composites made using liquid composite molding”, Tribology International, Vol.92, pp.222–232, 2015.
    43. I. Avdeev and M. Gilaki, “Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact”, Journal of Power Sources, Vol. 271, pp.382–391, 2014.
    44. P. Yang, S.S. Shams, A. Slay, B. Brokate and R. Elhajjar, “Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores”, Composite Structures, Vol.129, pp.213–223, 2015.
    45. P.L. Menezes, Kisore ,S.V. Kailas and M.R. Lovell, “Friction and transfer layer formation in polymer–steel tribo-system: role of surface texture and roughness parameters”, Wear, Vol.271, pp.2213–2221, 2011.
    46. O. Faruk, A.K. Bledzki, H.-P. Fink and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010”, Progress in Polymer Science, Vol.37, pp.1552– 1596, 2012.
    47. I.I. Qamhia, S.S. Shams and R.F. El-Hajjar, “Quasi-isotropic triaxially braided cellulose-reinforced composites”, Mechanics of Advanced Materials and Structures, Vol.22, pp.988–995, 2015.
    48. F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. F-Fehri, R. Bouhfid, K. Benmoussa and A.Qaiss, “Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene”, Materials and Design, Vol.43, pp.200–205, 2013.
    49. V.K. Thakur and M.K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites”, Carbohydrate Polymers, Vol.109, pp.102–117, 2014.
    50. A. Elkhaoulani, F. Arrakhiz, K. Benmoussa, R. Bouhfid and A. Qaiss, “Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene”, Materials and Design, Vol.49, pp.203–208, 2013.
    51. P.L. Menezes, P.K. Rohatgi and M.R. Lovell, “Tribology of Natural Fiber Reinforced Polymer Composites”, ASME/STLE 2011 International Joint Tribology Conference, pp.341–343, Los Angeles, California, USA, October 2011.
    52. H.S. Kim, H.-S. Yang, H.-J. Kim and H.-J. Park, “Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites”, Journal of Thermal Analysis and Calorimetry, Vol.76, pp.395-404, 2004.
    53. H.D. Rozman, L. Musa and A. Abubaker, “Rice Husk-Polyester Composites: The Effect of Chemical Modification of Rice Husk on the Mechanical and Dimensional Stability Properties”, Journal of Applied Polymer Science, Vol.97, pp.1237-1247, 2005.
    54. 韓錦鈴、黃亭維、沈詩瑜、周鈺承、游博盛、余奕飛,稻殼之農業廢棄物再利用之研究,國立宜蘭大學化學工程與材料工程系,工程學刊,2010
    55. T.H. Liou, “Evolution of chemistry and morphology during the carbonization and combustion of rice husk”, Carbon, Vol.42, pp.785-794, 2004.
    56. S.D. Saravanana and M.S. Kumarb, “Effect of Mechanical Properties on Rice Husk Ash Reinforced Aluminum alloy (AlSi10Mg) Matrix Composites”, Procedia Engineering, Vol.64, pp.1505 – 1513, 2013.
    57. B.S. Todkar, O.A. Deorukhkar and S.M. Deshmukh, “Extraction of Silica from Rice Husk”, International Journal of Engineering Research and Development, Vol.12, pp.69-74, 2016.
    58. R. Patil, R. Dongre and J. Meshram, “Preparation of Silica Powder from Rice Husk, IOSR Journal of Applied Chemistry”, International Conference on Advances in Engineering & Technology, pp.26-29, 2014.
    59. R.Madrid, C.A. Nogueira and F. Margarido, “Production and characterisation of amorphous silica from rice husk waste”, pp.10-13, 4th International Conference on Engineering for Waste and Biomass Valorisation, September 2012.
    60. S. Elangovan, S. Semeer and K. Prakasan, “Temperature and stress distribution in ultrasonic metal welding—An FEA-based study”, Journal of Materials Processing Technology, Vol.209, pp.1143–1150, 2009.
    61. F. Haddadi and F. A-Farha, “Microstructural and mechanical performance of aluminium to steel high power ultrasonic spot welding”, Journal of Materials Processing Technology, Vol.225, pp.262–274, 2015.
    62. U. Parmar and D.H. Pandya, “Experimental Investigation of Ultrasonic Welding on Non-metallic Material”, Procedia Technology, Vol.23, pp.551– 557, 2016.
    63.CAMPUS® http://www.campusplastics.com/material/pdf/49004/SINKRALB532-E?sLg=en (2016)
    64. J. Zhang, K.K. Chawla and U.K. Vaidya, “FEA of Temperature Profile in the Ultrasonic Welded Joint”, Advanced Materials Research, Vol.557-559, pp.1317-1321, 2012.

    下載圖示
    QR CODE