簡易檢索 / 詳目顯示

研究生: 勃喀許
Prakash Bhimrao Patil
論文名稱: 第一部分 通過 BF3.Et2O 介導的 1-萘酚和 Ynones 的一鍋級聯 4,5-環化反應合成 Perinaphthenones 第二部分 3-溴丙烯醛與苯胺反應合成α-溴烯胺酮的研究
PART-I Synthesis of Perinaphthenones via BF3.Et2O 4,5-Annulation Reactions of 1-Naphthols and Ynones PART-II A Study of the Reactions of 3-Bromopropenals with Anilines for the Synthesis of α-Bromo Enaminones
指導教授: 姚清發
Yao, Ching-Fa
口試委員: 姚清發
Yao, Ching-Fa
陳焜銘
Chen, Kwunmin
柳如宗
Liu, Ju-Tsung
林文偉
Lin, Wenwei
劉維民
Liu, Wei-Min
口試日期: 2022/06/17
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 237
中文關鍵詞: 環萘酮圍產期α-萘酚伊諾內斯無溶劑一鍋法合成α-溴烯胺酮3 溴丙烯醛苯胺二甲基亞砜異納扎羅夫乙腈丙酮
英文關鍵詞: Periannulation, α-naphthol, One-pot synthesis, 3-bromo propenals, anilines, dimethylsulfoxide, Iso-Nazarov, Acetonitrile, Acetone
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200657
論文種類: 學術論文
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    第一部分
    本部分包含一章,闡述了路易斯酸介導的炔酮和1-萘酚的環化反應。
    第 1 章:“通過 BF3.Et2O 介導的 1-萘酚和 Ynones 的一鍋級聯 4,5-環化反應合成 Perinaphthenones”
    我們提供了一種簡單而獨特的方法,用於使用 α-萘酚與 ynone 的 C4-C5 環環化反應合成高度取代的環萘酮。我們使用現成的起始材料在 30 分鐘內在 C4-C5 位點完成了 1-萘酚的脫芳香環環化,收率從良好到中等。此外,所提出的程序不僅可以替代前述方法,而且還可以簡單地合成迄今為止難以獲得的 4,6-二芳基環萘酮衍生物。我們還注意到新創建的化合物是發光的。

    關鍵詞:環萘酮;圍產期; α-萘酚;伊諾內斯;無溶劑。 

    第二部分
    本部分闡述了α-溴烯胺酮的合成及其應用
    第 2 章:“3-溴丙烯醛與苯胺反應合成 α-溴烯胺酮的研究”
    使用一鍋法描述了-溴烯胺酮的合成。不需要外部溴化劑,因為反應由對甲苯磺酸一水合物 (TsOH.H2O) 介導的 3-溴丙烯醛與苯胺在二甲亞砜 (DMSO) 中的反應催化。在鄰位連接有空間位阻吸電子基團的苯胺用於進行化學選擇性1,2-加成。此外,使用額外的苯胺衍生物作為親核試劑的反應產生了少量的 1,4-加成產物。對於苯胺衍生物,3-溴丙烯醛表現出廣泛的反應性。

    關鍵詞:一鍋法合成; α-溴烯胺酮;3 溴丙烯醛;苯胺;二甲基亞砜。

    第三部分

    本部分包含通過溶劑捕獲異納扎羅夫中間體合成環戊烯稠合衍生物。

    第 3 章:“碘介導的與乙腈/丙酮的間斷 Iso-Nazarov 反應用於獲得高度取代的環戊烯稠合衍生物。”

    我們實現了前所未有的碘介導溶劑捕獲的共軛二烯底物異納扎羅夫反應,以產生非對映選擇性環戊烯稠合衍生物。目前的方法是第一個捕獲共軛二烯醛在乙腈/丙酮中的異納扎羅夫反應中產生的環戊氧基烯丙基陽離子。

    關鍵詞: 異納扎羅夫, 乙腈, 丙酮,

    PART-I
    This part contains one chapter, which illustrates the Lewis acid mediated annulation reaction of ynones and 1-naphthols.
    CHAPTER-1: “Synthesis of Perinaphthenones via BF3.Et2O 4,5-Annulation Reactions of 1-Naphthols and Ynones”
    We provide a simple and unique approach for the synthesis of highly substituted perinaphthenones using C4-C5 peri-annulation reactions of α-napthols with ynones. We accomplished dearomative peri-annulation of 1-napthols at C4-C5 sites in 30 minutes using readily available starting materials with yields ranging from good to moderate. Furthermore, the proposed procedure would not only be an alternative to the previously stated methods, but it would also allow for the simple synthesis of heretofore difficult to get 4,6-diarylperinaphthenone derivatives. We also noticed that the newly created compounds were luminous.
    This part illustrates the synthesis of α-Bromo Enaminones and their applications
    CHAPTER-2: “A Study of the Reactions of 3-Bromopropenals with Anilines for the Synthesis of α-Bromo Enaminones”
    The synthesis of -bromo enaminones is described using a one-pot method. There is no need for an external brominating agent because the reactions are catalyzed by p-toluenesulfonic acid monohydrate (TsOH.H2O) mediated reactions of 3-bromopropenals with anilines in dimethyl sulfoxide (DMSO). Aniline with a sterically hindered electron-withdrawing group attached at the ortho-position was used to perform the chemoselective 1,2-addition. Furthermore, reactions employing additional aniline derivatives as nucleophiles yielded small yields of the 1,4-addition product. With aniline derivatives, the 3-bromopropenals displayed a wide spectrum of reactivities.
    Part III
    This part contains synthesis of cyclopentene fused derivatives from trapping of iso-Nazarov intermediate by solvents.

    CHAPTER-3: “Iodine mediated interrupted Iso-Nazarov reaction with Acetonitrile/Acetone for Accessing Highly Substituted Cyclopentene fused derivatives.”

    We achieved an unprecedented iodine-mediated solvent trapped iso-Nazarov reaction of conjugated dienal substrate to produce diastereoselective cyclopentene fused derivatives. The current approach is the first to capture the cyclopentyl oxyallyl cation produced in the iso-Nazarov reaction of conjugated dienals in acetonitrile/acetone.

    ACKNOWLEDGEMNT i-iii ABSTRACT IN CHINESE iv-vi ABSTRACT IN ENGLISH vii-ix ABBREVIATION LIST x-xi TABLE OF CONTENTS Part-I CHAPTER-1: “Synthesis of Perinaphthenones via BF3.Et2O 4,5-Annulation Reactions of 1-Naphthols and Ynones.” 1 I-1-A. Introduction 2-4 I-1-B. Reviews and literatures I-1-B.1. Selected synthetic methods of perinaphthenones 4-7 I-I-B.2. Selected reactions of perinaphthenones 8-10 I-1-C. Results and discussions I-1-C.1. Reaction conditions optimization for 4aj 10-12 I-1-C.2. Substrate scope of perinaphthenone 4 with respect to ynones 2 12-15 I-1-C.3. Substrate scope of perinaphthenone 4 with respect to 1-Naphthol 38 15-17 I-1-C.4. Proposed reaction mechanism for 4aa 17-18 I-1-C.5. Control experiment 19-19 I-1-D. Application of perinaphthenone derivatives 19-20 I-1-E. Conclusion 21-21 I-1-F. Experimental Section I-1-F.1. General information 22-22 I-1-F.2. Experimental procedure 23-23 I-1-G. Analytical data for all new compounds 24-31 I-1-H. X-ray crystallographic data of selected compounds 32-36 I-1-I. 1H and 13C NMR spectra for all new compounds 37-65 I-1-J. References 67-68 Part II CHAPTER-2: “A Study of the Reactions of 3-Bromopropenals with Anilines for the Synthesis of α-Bromo Enaminones.” 69 II-1. A. Introduction 70-71 II-1-B. Reviews and literatures II-1-B.1. Synthetic applications of enaminones 71-73 II-I-B. 2. Selected synthetic reactions of enaminones 73-75 II-1-C. Results and discussion II-1-C.1. Reaction conditions optimization for 3aa and 4aa 75-76 II-1-C.2. Substrate scope of anilines and 3-bromopropenals 76-79 II-1-C.3. Substrate scope of amines and 3-bromopropenals 79-80 II-1-C.4. Proposed reaction mechanism 80-81 II-1-C.5. Control experiment 82-82 II-1-D. Application 82-82 II-1-E. Conclusion 83-83 II-1-F. Experimental Section II-1-F.1. General information 84-84 II-1-F.2. Experimental procedure 85-85 II-1-G. Analytical data for all new compounds 86-101 II-1-H. X-ray crystallographic data of selected compounds 102-115 II-1-I. 1H and 13C NMR spectra for all new compounds 116-171 II-1-J. References 172-172 Part III CHAPTER-3: “Iodine mediated interrupted Iso-Nazarov reaction with Acetonitrile/Acetone for Accessing Highly Substituted Cyclopentene fused derivatives.” 173 III-1. A. Introduction 174-174 III-1-B. Reviews and literatures III-1-B.1. Interrupted Iso-Nazarov reaction 175-179 III-1-C. Results and discussion III-1-C.1. Reaction conditions optimization for acetonitrile reaction 179-181 III-1-C.2. Substrate scope of acetonitrile reaction 181-182 III-1-C.3. Reaction of Benzonitrile and Benzyl nitrile with 1a 182-182 III-1-C.4. Ring cleavage of oxazoline compounds 183-183 III-1-C.5. Reaction conditions optimization for acetone reaction 183-185 III-1-C.6. Substrate scope of acetone reaction 185-186 III-1-C.7. Proposed reaction mechanism 186-187 III-1-D. Conclusion 188-188 III-1-E. Experimental Section III-1-E.1. General information 189-189 III-1-E.2. Experimental procedure 190-190 III-1-F. Analytical data for all new compounds 191-199 III-1-G. X-ray crystallographic data of selected compounds 200-207 III-1-H. 1H and 13C NMR spectra for all new compounds 208-235 III-1-I. References 236-236 List of Publications 237-237

    Part-I
    (1) Luis, J. G.; Fletcher, W. Q.; Echeverri, F.; Grillo, T. A., Tetrahedron 1994, 50, 10839-11078.
    (2) Luis, J. G.; Echeverri, F.; Quiñones, W.; Brito, I.; López, M.;Torres, F.; Cardona, G.; Aguiar, Z.; Pelaez, C.; Rojas, M., J. Org. Chem 1993, 58, 4306-4308.
    (3) a) Quinones, W.; Escobar, G.; Echeverri, F.; Torres, F.; Rosero, Y.; Arango, V.; Cardona, G.; Gallego, A., Molecules 2000, 5, 974-980. b) Weiss, U.; Edwards, J. M.; Phytochemistry 1970, 7, 1653-1657. c) Rodriguez, A. D.; Shi, Yan-Ping Tetrahedron 1982, 38, 843-851. d) Cieplik, F.; Späth, A.; Regensburger, J.; Gollmer, A.; Tabenski, L.; Hiller, K. A.; Bäumler, W.; Maisch, T.; Schmalz, G.; Free Radic. Biol. Med. 2013, 65, 477-487. e) Hölscher, D.; Schneider, B. Phytochemistry 2005, 66, 59−64.
    (4) Cook, J. W.; Hewett, C. L., J. Chem. Soc. 1934, 365-375.
    (5) Lock, G.; Gergely, G., Monatshefte für Chemie 1948, 79, 521-530.
    (6) Pagni, R. M.; Burnett, M. N.; Hassaneen, H. M., Tetrahedron 1982, 38, 843-851.
    (7) Calcott, W. S., Tinker, J. M., Weinmayr, V., J. Am. Chem. Soc. 1939, 61, 949-951
    (8) Ospina, F.; Ramirez, A.; Cano, M.; Hidalgo, W.; Schneider, B.; Otálvaro, F. J. Org. Chem. 2017, 82, 3873-3879.
    (9) Fukuyama, T.; Sugimori, T.; Maetani, S.; Ryu, I. Org. Biomol. Chem. 2018, 16, 7583-7587.
    (10) Yavari, I.; Khajeh-Khezri, A.; Halvagar, M. R. Synlett 2018, 29, 2011-2014.
    (11) a) Michalska, M.; Grudzien, K.; Małecki, P.; Grela, K. Org. Lett. 2018, 20, 954-957. b) Cano, M.; Rojas, C.; Hidalgo, W.; Saez, J.; Gil, J., Schneider, B.; Otalvaro, F., Tetrahedron Lett. 2013, 54, 351-354
    (12) Duque, L.; Zapata, C.; Rojano, B.; Schneider, B.; Otalvaro, F., Org. Lett. 2013, 15, 3542-3545.
    (13) Rosquete, L. I.; Cabrera-Serra, M. G.; Piñero,, J. E.; Martín-Rodríguez, P.; Fernández-Pérez, L.; Luis, J. G.; McNaughton-Smith,G.; Abad-Grillo, T. Bioorg. Med. Chem. 2010, 18, 4530-4534.
    (14) Otalvaro, F.; Nanclares, J.; Vasquez, L. E.; Quinones, W.; Echeverri, F.; Arango, R.; Schneider, B., J. Nat. Prod., 2007, 70, 887-890.
    (15) Lygo, B.; Gardiner, S. D.; McLeod, M. C.; To, D. C. M., Org. Biomol. Chem 2007, 5, 2283-2290.
    (16) Hidalgo, W.; Duque, L.; Saez, J.; Arango, R.; Gil, J.; Rojano, B.; Schneider, B.; Otalvaro, F., J. Agric. Food Chem. 2009, 57, 7417-7421.
    (17) Bäumler, W.; Felgenträger, A.; Lehner, K.; Maisch, T.; Regensburger, J.; Santarelli, F.; Spath, A., Patent: US20140039184 A1, 2014.
    (18) Benniston, A. C.; Bunn, A., J. Chem. Res. 2010, 11, 603-605.
    (19) Fieser, L. F., Newton, L. W., J. Am. Chem. Soc., 1942, 64, 917-921
    (20) Streitwieser, A.; Word, J. M.; Guibe, F.; Wright, J. S., J. Org. Chem., 1981, 46, 2588-2589.
    (21) Fieser, L. F., Hershberg, E. B., J. Am. Chem. Soc., 1938, 60, 1658-1665
    Part-II
    1) Wang, Z.; Zhao, B.; Liu, Y.; Wan, J. P. Adv. Synth. Catal. 2022, 364, 1-15.
    2) Amaye, I. J.; Haywood, R. D.; Mandzo, E. M.; Wirick, J. J.; Jackson-Ayotunde, P. L. Tetrahedron 2021, 83, 131984.
    3) Reiher, C. A.; Shenvi, R. A. J. Am. Chem. Soc. 2017, 139, 3647-3650.
    4) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326-9336.
    5) Xu, L.; Wu, L.; Chen, T.; Xu, S.; Huang, C.; Wang, Y.; You, Q.; Shen, J. ChemistrySelect, 2020, 5, 655– 659.
    6) Cheng, G.; Weng, Y.; Yang, X.; Cui, X. Org. Lett. 2015, 17, 3790-3793.
    7) De Nino, A.; Algieri, V.; Tallarida, M. A.; Costanzo, P.; Pedrón, M.; Tejero, T.; Merino, P.; Maiuolo, L. Eur. J. Org. Chem. 2019, 33, 5725–5731.
    8) Xia, X.; He, W.; Wang, D. Adv. Synth. Catal. 2019, 361, 2959-2964.
    9) Ge, B.; Peng, Y.; Liu, J.; Wen, S.; Peng, C.; Cheng, G. Tetrahedron 2020, 76, 130818.
    10) Wu, M; Jiang,Y.; An,.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236-4240.
    11) Weng, Y.; Lv, W.; Yu, J.; Ge, B.; Cheng, G. Org. Lett. 2018, 20, 1853-1856.
    12) Ding, Q.; Li, M.; Sun, Y.; Yu, Y.; Baell, J. B.; Huang, F. Org. Chem. Front., 2020, 7, 457-463.
    13) a) Shi, W.; Sun, S.; Wu, M.; Catano, B.; Li, W.; Wang, J.; Guo, H.; Xing, Y. Tetrahedron Lett. 2015, 56, 468-471; b) Kim, S. M.; Lee, D.; Hong, S. H. Org. Lett. 2014, 16, 6168-6171.
    14) Kang, Y.-W.; Cho, Y. J.; Han, S. J.; Jang, H.-Y. Org. Lett. 2016, 18, 272-275.
    15) Yu, D.; Sum, Y. N.; Ean, A. C. C. ; Chin, M. P. ; Zhang, Y. Angew. Chem. Int. Ed. 2013, 52, 5229-5232.
    16) Miura, T.; Funakoshi, Y.; Morimoto, M.; Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 17440-17443.
    17) a) Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Green Chem. 2019, 21, 3796-3801; b) Xu, K.; Zhang, Z.; Qian, P.; Zha, Z.; Wang, Z. Chem. Commun. 2015, 51, 11108-11111.
    18) Reyno, R. S.; Sugunan, A.; Ranganayakulu, S.; Suresh, C. H.; Rajendar, G. Org. Lett. 2020, 22, 1040-1045.
    19) The catalytic version of this reaction was suggested by the reviewers. We thank the reviewers for a valuable suggestion.
    20) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701-3707.
    Part III
    1. (a) Denmark, S. E.; Hite, G.A. Helv.Chim.Acta 1988,71,195. (b) Marsili, L.A.; Pergomet, J. L.; Gandon, V.; Riveira, M. J. Org. Lett. 2018, 20, 7298-7303.
    2. (a) Riveira, M. J.; Marsili, L. A.; Mischne, M. P. Org. Biomol. Chem. 2017, 15, 9255-9274. (b) Yadykov, A.V.; Shirinian, V. Z. Adv. Synth. Catal. 2020, 362, 702-723. (c) M. Alajarin, F.-J. Ballester, J.-A. Vivancos, R.-A. Orenes, A. Vidal, P. Sanchez-Andrada, M. Marin-Luna J. Org. Chem. 2020, 85, 4565-4573. (d) Ramesh, G.; Balamurugan, R. J. Org. Chem. 2021, 86, 16278-16292.
    3. (a) Marques, A.-S.; Coeffard, V.; Chataigner, I.; Vincent, G.; Moreau, X Org. Lett. 2016, 18, 5296. (b) Marques, A.-S.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau, X. Org. Lett. 2018, 20, 792.
    4. Marques, A.-S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; G. Vincent, X. Moreau Angew. Chem. Int. Ed. 2019, 58, 9969.
    5. Riveira, M. J.; Quiroga, G. N.; Mata, E. G.; Gandon, V.; Mischne, M. P. J. Org. Chem. 2015, 80, 6515. (b)Riveira M. J.; Mischne, M. P. An J. Org. Chem. 2014, 79, 8244
    6. Riveira, M. J.; Marcarino, M. O.; La-Venia, A. Org. Lett. 2018, 20, 4000.
    7. (a) Lin, C.-C.; Teng, T.-M.; Odedra, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 3798-3799. (b) Lin, C.-C.; Teng, T.-M.; Tsai, C.-C.; Liao, H.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16417–16423.
    8. William, R.; Wang, S.; Ding, F.; Arviana, E. N.; Liu, X.-W. Angew. Chem. Int. Ed. 2014, 53, 10742–10746.
    9. William, R.; Leng, W. L.; Wang, S.; Liu, X.-W. Chem. Sci. 2016, 7, 1100-1103.
    10. Bandi, V.; Kavala, V.; Konala, A.; Hsu, C.-H.; Villuri, B. K.; Reddy, S. R.; Lin, L.-C.; Kuo, C.-W.; Yao, C.-F. J. Org. Chem. 2019, 84, 3036.
    11. Hoff, B. H. Acetonitrile as a Building Block and Reactant Synthesis 2018, 2824. (b) Chen, M.-E.; Chen, X.-W.; Hu, Y.-H.; Ye, R.; Lv, J.-W.; Li, B.; Zhang, F.-M. Org. Chem. Front., 2021, 4623.
    12. Kavala, V.; Murru, S.; Das, G.; Patel, B. K. Tetrahedron 2008, 64, 3960-3965.
    13. Bolsakova, J.; Jirgensons A. Chem Heter Comp. 2017, 53, 1167–1177.

    下載圖示
    QR CODE