簡易檢索 / 詳目顯示

研究生: 曾文宣
Tseng, Wen-Hsuan
論文名稱: 草蜥屬視蛋白基因的序列與表現
Sequences and expression of cone opsin genes in Takydromus species
指導教授: 林思民
Lin, Si-Min
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 56
中文關鍵詞: 錐狀細胞婚姻色視蛋白性擇光譜調節草蜥睪固酮視覺敏感度
英文關鍵詞: cone cell, nuptial color, opsin, sexual selection, spectral tuning, Takydromus, testosterone, visual sensitivity
DOI URL: https://doi.org/10.6345/NTNU202203735
論文種類: 學術論文
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜調節(spectral tuning)可由感光細胞中視蛋白序列突變所導致的結構改變,使最敏感的波長在光譜上往長波或短波位移。位移造成的視覺敏感度差異,除了反映光環境的感官適應外,也同時在性擇上幫助尋覓適存度最佳的配偶。分布於東亞的草蜥屬(Takydromus)物種在短時間內演化出多樣的雌雄色型型式,包含在同一支系中演化出具雌雄雙色型與缺乏雌雄雙色型的物種。其中,季節性雌雄雙色型的翠斑草蜥雌蜥會以雄蜥體側綠色斑點的飽和程度做為擇偶依據,因此我推測物種間的色型差異可能與視覺敏感度差異有關。本研究第一部分增幅並定序來自臺灣的8種草蜥之視蛋白基因片段,由此設計特定基因引子,透過RACE增幅並定序來自草蜥視網膜的全長視蛋白cDNA。經序列比對後,發現所有物種皆表現感應紫外光(SWS1)、藍光(SWS2)、綠光(Rh2)和紅光(LWS)的四種視蛋白基因。光譜調節位點上,在任一視蛋白基因、任一點位上都沒有變異,顯示草蜥屬物種間的視蛋白光敏感度相仿,與多樣的雌雄色型並沒有關聯。研究第二部分則利用偵測視蛋白表現量的改變,了解翠斑草蜥在繁殖季與非繁殖間視覺與婚姻色的關聯。除了比對採樣自繁殖季和非繁殖季的雄蜥、雌蜥和幼雄蜥視蛋白表現量外,亦在繁殖季前期進行睪固酮的操控性實驗,比對實驗組和控制組雄蜥間的表現量差異。實驗結果顯示,雌蜥在繁殖季有顯著較高於非繁殖季的LWS表現量;雄蜥則有較高的Rh2表現量。幼雄蜥、非繁殖季雄蜥、控制組雄蜥與睪固酮操作雄蜥正好呈現Rh2由低漸高的比重表現量趨勢。經反射光譜量測後,我推測Rh2視蛋白的表現量比重上升,可能使繁殖季雄蜥對綠色(婚姻色)更加敏感,並增加對色彩的辨識能力。雌蜥繁殖季LWS的表現量上升,則可能提升對明暗度的敏感度,有助選擇最佳的配偶。最後,無論LWS或Rh2的表現量,均在繁殖季才有性別上的顯著差異,暗示婚姻色與季節性起伏的視蛋白表現量具有演化上的關聯性。本篇研究為首次在陸生脊椎動物上,記錄性激素如何影響物種內的視覺差異的研究,亦提供感官驅動性擇演化的佐證。

    Spectral tuning is an evolutionary adaptation by changing structures of opsins in photorecptor cells. In addition to the adaptation to different optical environments, it also plays a critical role in sexual selection to choose mates with optimal fitness. Takydromus lizards in eastern Asia have evolved multiple mate-choice patterns, involving species with and without sexual dichromatism in the same clade. I deduced that the color variation among Takydromus species may associate to their visual sensitivity. The first part of my study aimed to clone the four classes of cone opsin for the full-length expressed cDNA from retinas of chosen Takydromus species with different dichromatic patterns. All species express 4 opsins that are sensitive to ultraviolet, blue, green and red light wavelength. However, no mutation was detected at any tuning site among species. Therefore, in the second part, I evaluated the relative expression of cone opsins in breeding and nonbreeding seasons from male, female and juvenile T. viridipunctatus, whose males display prominent nuptial coloration along the body side during the breeding seasons. Our results suggest that males possess increased proportion of Rh2 and decreased LWS expression during the breeding seasons; while females show the reversed pattern. Same expression pattern can be found comparing male lizards with artificial testosterone treatment to those without in the breeding seasons. Integrated with predicted spectral sensitivity and nuptial color reflectance, seasonal modification of opsin gene expression has a close link to sex hormone, which can enhance visual sensitivity toward greenish nuptial coloration in males. Females, on the other hand, do not directly raise color discrimination ability or greenish light sensitivity, however, they adjust achromatic sensitivity toward brightness and possibly benefit in mate choice.

    Introduction 2 Materials and Methods 12 Results 20 Discussion 23 References 30 Table 1 40 Table 2 41 Table 3 42 Table 4 43 Table 5 44 Figure 1 46 Figure 2 47 Figure 3 48 Figure 4 49 Figure 5 50 Appendix 1 51 Appendix 2 52 Appendix 3 53

    Andersson, M., & Simmons, L. W. (2006). Sexual selection and mate choice. Trends in Ecology & Evolution. 21(6): 296–302.
    Bajer, K., Molnár, O., Török, J., & Herczeg, G. (2010). Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behavioral Ecology and Sociobiology. 64: 2007–2014.
    Bajer, K., Molnár, O., Török, J., & Herczeg, G. (2011). Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biology letters. 7(6): 866–868.
    Barbour, H. R., Archer, M. A., Hart, N. S., Thomas, N., Dunlop, S. A., Beazley, L. D., & Shand, J. (2002). Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus. Journal of Comparative Neurology. 450: 334–344.
    Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., & Maier, E. J. (1996). Ultraviolet vision and mate choice in zebra finches. Nature 380: 433–435.
    Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature. 411(6840): 944–948.
    Boughman, J. W. (2002). How sensory drive can promote speciation. Trends in Ecology & Evolution. 17(12): 571–577.
    Bowmaker, J. K., Kovach, J. K., Whitmore, A. V. & Loew, E. R. (1993). Visual pigments and oil droplets in genetically manipulated and carotenoid deprived quail: a microspectrophotometric study. Vision Research. 33: 571–578.
    Bowmaker, J. K., Loew, E. R., & Ott, M. (2005). The cone photoreceptors and visual pigments of chameleons. Journal of Comparative Physiology A. 191(10): 925–932.
    Bowmaker, J. K., & Hunt, D. M. (2006). Evolution of vertebrate visual pigments. Current Biology. 16(13): 484–489.
    Bowmaker, J. K. & Loew, E. (2008). Vision in fish. In The Senses: A Comprehensive Reference. Vol. 1 (ed. A. I. Basbaum A. Kaneko G. M. Shepherd and G. Westheimer): 53–76. San Diego: Academic Press.
    Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research. 48: 2022–2041.
    Carleton, K. L., Hárosi, F. I., & Kocher, T. D. (2000). Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Research. 40(8): 879–890.
    Cowing, J. A., Poopalasundaram, S., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2002a). Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry. 41: 6019–6025.
    Cowing, J. A., Poopalasundaram, S., Wilkie, S. E., Robinson, P. R., & Bowmaker, J. K. (2002b). The molecular mechanism for the spectral shifts between vertebrate ultraviolet-and violet-sensitive cone visual pigments. Biochemical Journal. 367(1): 129–135.
    Cummings, M. E., Rosenthal, G. G., & Ryan, M. J. (2003). A private ultraviolet channel in visual communication. Proceedings of the Royal Society of London B: Biological Sciences. 270(1518): 897–904.
    Davies, W. L., Cowing, J. A., Carvalho, L. S., Potter, I. C., Trezise, A. E., Hunt, D. M., & Collin, S. P. (2007). Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. The FASEB Journal. 21(11): 2713–2724.
    Davies, W. I., Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology. 21(13): 3121–3158.
    Dominey, W. J. (1984). Effects of sexual selection and life history on speciation: species flocks in African cichlids and Hawaiian Drosophila. In A. A. Echelle & I. Kornfield (Eds.), Evolution of fish species flocks: 231–249. Orono: University of Maine at Orono Press.
    Ebrey, T., & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in Retinal and Eye Research. 20: 49–94.
    Ellingson, J. M., Fleishman, L. J., & Loew, E. R. (1995). Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A. 177(5): 559–567.
    Emerling, C. A., & Springer, M. S. (2014). Eyes underground: regression of visual protein networks in subterranean mammals. Molecular Phylogenetics and Evolution. 78: 260–270.
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I., & Lavine, L. C. (2012). A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science. 337(6096): 860–864.
    Endler, J. A. (1991). Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Research. 31(3): 587–608.
    Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist. 139: 125–153.
    Endler, J. A. (1993). Some general comments on the evolution and design of animal communication systems. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 340(1292): 215–225.
    Fisher, R. A. (1930). The Genetical Theory of Natural Selection, Clarendon Press.
    Fleishman, L. J., & Persons, M. (2001). The influence of stimulus and background colour on signal visibility in the lizard Anolis cristatellus. Journal of Experimental Biology. 204(9): 1559–1575.
    Fleishman, L. J., Loew, E. R., & Whiting, M. J. (2011). High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards. Proceedings of the Royal Society of London B: Biological Sciences. 278(1720): 2891–2899.
    Fuller, R. C., Carleton, K. L., Fadool, J. M., Spady, T. C., & Travis, J. (2005). Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodei. Journal of Evolutionary Biology. 18(3): 516–523.
    Fuller, R.C., Houle, D., & Travis, J. (2005). Sensory bias as an explanation for the evolution of mate preferences. The American Naturalist.166: 437–446.
    Gomez, D., & Théry, M. (2007). Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. The American Naturalist. 169(S1): 42–61.
    Hart, N. S., & Vorobyev, M. (2005). Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology A. 191(4): 381–392.
    Hart, N. S., Coimbra, J. P., Collin, S. P., & Westhoff, G. (2012). Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology. 520(6): 1246–1261.
    Hauser, F. E., van Hazel, I., & Chang, B. S. (2014). Spectral tuning in vertebrate short wavelength‐sensitive 1 (SWS1) visual pigments: Can wavelength sensitivity be inferred from sequence data? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 322(7): 529–539.
    Hope, A. J., Partridge, J. C., & Hayes, P. K. (1998). Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proceedings of the Royal Society of London B: Biological Sciences. 265(1399): 869–874.
    Hunt, D. M., Fitzgibbon, J., Slobodyanyuk, S. J., & Bowmaker, J. K. (1996). Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research. 36: 1217–1224.
    Hunt, D. M., Cowing, J. A., Wilkie, S. E., Parry, J. W., Poopalasundaram, S., & Bowmaker, J. K. (2004). Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochemical & Photobiological Sciences. 3(8): 713–720.
    Kawamura, S., & Yokoyama, S. (1993). Molecular characterization of the red visual pigment gene of the American chameleon (Anolis carolinensis). FEBS Letters. 323: 247–251.
    Kawamura, S., & Yokoyama, S. (1995). Paralogous origin of the rhodopsin-like opsin genes in lizards. Journal of Molecular Evolution. 40: 594–600.
    Kawamura, S., & Yokoyama, S. (1996). Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Vision Research. 36: 2797–2804.
    Knott, B., Berg, M. L., Morgan, E. R., Buchanan, K. L., Bowmaker, J. K. & Bennett, A. T. D. (2010). Avian retinal oil droplets: dietary manipulation of colour vision? Proceedings of the Royal Society of London B: Biological Sciences. 277: 953–962.
    Kojima, D., Okano, T., Fukada, Y., Shichida, Y., Yoshizawa, T., & Ebrey, T. G. (1992). Cone visual pigments are present in gecko rod cells. Proceedings of the National Academy of Sciences. 89(15): 6841–6845.
    Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences. 78(6): 3721–3725.
    Lande, R. (1982). Rapid origin of sexual isolation and character divergence in a cline. Evolution. 213–223.
    Leal, M., & Fleishman, L. J. (2002). Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species. Proceedings of the Royal Society of London B: Biological Sciences. 269(1489): 351–359.
    LeBas, N.R., & Marshall, N.J. (2000). The role of colour in signalling and male choice in the agamid lizard, Ctenophorus ornatus. Proceedings of the Royal Society of London B: Biological Sciences. 267: 445–452.
    Liebman, P. A., & Granda, A. M. (1971). Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia mydas. Vision Research. 11: 105–114.
    Lin, S. M. (2003). Phylogeny and phylogenetic studies of Takydromus in Taiwan and adjacent regions (Squamata: Lacertidae). Ph. D. dissertation, National Taiwan Normal University, Taipei.
    Liu, Y., Zhou, Q., Wang, Y., Luo, L., Yang, J., Yang, L., Liu, M., Li, Y., Qian, T., Zheng, Y., Li, M., Li, J., Gu, Y., Han, Z., Xu, M., Wang, Y., Zhu, C., Yu, B., Yang, Y., Ding, F., Jiang, J., Yang, H., & Gu, X. (2015). Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nature communications. 6: 10033
    Loew, E. R., & Govardovskii, V. I. (2001). Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Visual Neuroscience. 18(05): 753–757.
    Loew, E. R., Fleishman, L. J., Foster, R. G., & Provencio, I. (2002). Visual pigments and oil droplets in diurnal lizards a comparative study of Caribbean anoles. Journal of Experimental Biology. 205: 927–938.
    Lue, K. Y., & Lin, S. M. (2008). Two New Cryptic Species of Takydromus (Squamata: Lacertidae) from Taiwan. Herpetologica. 64 (3): 379–395.
    Macedonia, J. M. (2008). Habitat light, colour variation, and ultraviolet reflectance in the Grand Cayman anole, Anolis conspersus. Biological Journal of the Linnean Society. 73: 299–320.
    Macedonia, J. M., Lappin, A. K., Loew, E. R., McGuire, J. A., Hamilton, P. S., Plasman, M., Brandt, Y., Lemos-Espinal, J. A., & Kemp, D. J. (2009). Conspicuousness of Dickerson's collared lizard (Crotaphytus dickersonae) through the eyes of conspecifics and predators. Biological Journal of the Linnean Society. 97(4): 749–765.
    Maan, M. E., Hofker, K. D., van Alphen, J. J., & Seehausen, O. (2006). Sensory drive in cichlid speciation. The American Naturalist. 167(6): 947–954.
    Martin, M., Le Galliard, J. F., Meylan, S., & Loew, E. R. (2015). The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. Journal of Experimental Biology. 218(3): 458–465.
    Meredith, R. W., Gatesy, J., Emerling, C. A., York, V. M., & Springer, M. S. (2013). Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet. 9(4): e1003432.
    Minamoto, T., & Shimizu, I. (2005). Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 140(2): 197–205.
    Miyagi, R., Terai, Y., Aibara, M., Sugawara, T., Imai, H., Tachida, H., Mzighani, S. I., Okitsu, T., Wada, A., & Okada, N. (2012). Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes. Molecular Biology and Evolution. 29(11): 3281–3296.
    Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science. 232(4747):193–202.
    Ohtsuka, T. (1985). Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii. Journal of Comparative Neurology. 237(2): 145–154.
    Okano, T., Kojima, D., Fukada, Y., Shichida, Y., & Yoshizawa, T. (1992). Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences. 89: 5932–5936.
    Olsson, M., Madsen, T., Wapstra, E., Silverin, B., Ujvari, B., & Wittzell, H. (2005). MHC, health, color, and reproductive success in sand lizards. Behavioral Ecology and Sociobiology. 58(3): 289–294.
    Olsson, M., Andersson, S., & Wapstra, E. (2011). UV-deprived coloration reduces success in mate acquisition in male sand lizards (Lacerta agilis). PLoS ONE. 6(5): e19360.
    Olsson, M., Stuart-Fox, D., & Ballen, C. (2013). Genetics and evolution of colour patterns in reptiles. Seminars in Cell & Developmental Biology. 24: 529–541.
    O'Quin, K. E., Hofmann, C. M., Hofmann, H. A., & Carleton K, L. (2010). Parallel evolution of opsin gene expression in African cichlid fishes. Molecular Biology and Evolution. 27: 2839–2854.
    Parry, J. W., & Bowmaker, J. K. (2000). Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Research. 40(17): 2241–2247.
    Pérez i de Lanuza, G., Carazo, P., & Font, E. (2014). Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Animal Behaviour. 90: 73–81.
    Pérez i de Lanuza, G., & Font, E. (2014). Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. Journal of Experimental Biology. 217(16): 2899–2909.
    Rennison, D. J., Owens, G. L., & Taylor, J. S. (2012). Opsin gene duplication and divergence in ray-finned fish. Molecular Phylogenetics and Evolution. 62(3): 986–1008.
    Ribbink, A. J., Marsh, B. A., Marsh, A. C., Ribbink, A. C., & Sharp, B. J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology.18: 149–310.
    Röll, B. (2000). Gecko vision—visual cells, evolution, and ecological constraints. Journal of Neurocytology. 29(7): 471–484.
    Röll, B. (2001). Multiple origin of diurnality in geckos: evidence from eye lens crystallins. Naturwissenschaften. 88(7): 293–296.
    Safran, R. J., Scordato, E. S., Symes, L. B., Rodríguez, R. L., & Mendelson, T. C. (2013). Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends in Ecology & Evolution. 28(11): 643–650.
    Sakmar, T. P., Menon, S. T., Marin, E. P., & Awad, E. S. (2002). Rhodopsin: Insights from recent structural studies. Annual Review of Biophysics and Biomolecular Structure. 31: 443–484.
    Seehausen, O., van Alphen, J. J. M., & Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277(5333): 1808–1811.
    Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R., van de Sluijs, I., Schneider, M. V., Tachida, H., Imai, H., & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature. 455(7213): 620–626.
    Shand, J., Davies, W. L., Thomas, N., Balmer, L., Cowing, J. A., Pointer, M., Carvalho, L. S., Trezise, A. E., Collin, S. P., Beazley, L. D., & Hunt, D. M. (2008). The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. Journal of Experimental Biology. 211(9): 1495–1503.
    Shao, Y. T., Wang, F. Y., Fu, W. C., Yan, H. Y., Anraku, K., Chen, I. S., & Borg, B. (2014) Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks. PLoS ONE 9(6): e100330.
    Simões, B. F., Sampaio, F. L., Jared, C., Antoniazzi, M. M., Loew, E. R., Bowmaker, J. K., Rodriguez, A., Hart, N. S., Hunt, D. M., Partridge, J. C., & Gower, D. J. (2015). Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology. 28(7): 1309–1320.
    Simões, B. F., Sampaio, F. L., Loew, E. R., Sanders, K. L., Fisher, R. N., Hart, N. S., Hunt, D. M., Partridge, J. C., & Gower, D. J. (2016). Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proceedings of the Royal Society of London B: Biological Sciences. 283(1823): 20152624.
    Spady, T. C., Seehausen, O., Loew, E. R., Jordan, R. C., Kocher, T. D., & Carleton, K. L. (2005). Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Molecular Biology and Evolution. 22: 1412–1422.
    Sugawara, T., Terai, Y., Imai, H., Turner, G. F., Koblmüller, S., Sturmbauer, C., Shichida, Y., & Okada, N. (2005). Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proceedings of the National Academy of Sciences. 102: 5448–5453.
    Temple, S. E., Plate, E. M., Ramsden, S., Haimberger, T. J., Roth, W. M., & Hawryshyn, C. W. (2006). Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch). Journal of Comparative Physiology A. 192(3): 301–313.
    Tseng, S. P., Wang, C. J., Li, S. H., & Lin, S. M. (2015) Within-island speciation with an exceptional case of distinct separation between two sibling lizard species divided by a narrow stream. Molecular Phylogenetics and Evolution. 90: 164–175.
    Vorobyev, M. (2003). Coloured oil droplets enhance colour discrimination. Proceedings of the Royal Society of London B: Biological Sciences. 270(1521): 1255–1261.
    Wald, G. (1955). The photoreceptor process in vision. American Journal of Ophthalmology. 40(5): 18–41.
    Wang, F. Y., Chung, W. S., Yan, H. Y., & Tzeng, C. S. (2008) Adaptive evolution of cone opsin genes in two colorful cyprinids, Opsariichthys pachycephalus and Candidia barbatus. Vision Research. 48: 1695–1704.
    Wang, F. Y., Yan, H. Y., Chen, J. S. C., Wang, T. Y., & Wang, D. (2009). Adaptation of visual spectra and opsin genes in seabreams. Vision Research. 49(14): 1860–1868.
    Wilkie, S. E., Robinson, P. R., Cronin, T. W., Poopalasundaram, S., Bowmaker, J. K., & Hunt, D. M. (2000). Spectral tuning of avian violet- and ultraviolet- sensitive visual pigments. Biochemistry. 39(27): 7895–7901.
    Yokoyama, S., & Radlwimmer, R. (1998). The ‘‘five-sites’’ rule and the evolution of red and green color vision in mammals. Molecular Biology and Evolution. 15: 560–567.
    Yokoyama, S., Zhang, H., Radlwimmer, F. B., & Blow, N. S. (1999). Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proceedings of the National Academy of Sciences. 96: 6279–6284.
    Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research. 9: 385–419.
    Yokoyama, S., & Blow, N. S. (2001). Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. Gene. 276(1): 117–125.
    Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene. 300: 68–79.
    Yokoyama, S., & Tada, T. (2003). The spectral tuning in the short wavelength -sensitive type 2 pigments. Gene. 306: 91–98
    Yokoyama, S., Takenaka, N., & Blow, N. (2007). A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei). Gene. 396: 196–202.
    Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics. 9: 259–282.
    羅晨涵。(2013)。翠斑草蜥的雄性體色在擇偶上的功能。動物行為暨生態學研討會摘要集,87頁。國立東華大學,花蓮縣。

    無法下載圖示 本全文未授權公開
    QR CODE