簡易檢索 / 詳目顯示

研究生: 許敦傑
Tun-Chieh Hsu
論文名稱: TBP功能喪失為聚麩醯胺神經退化性疾病之共同致病因素:與氧化壓力之關聯
Deactivation of TBP as a common pathogenic factor in polyglutamine induced neurodegenerations: Implication of Oxidative Stress
指導教授: 蘇銘燦
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 98
中文關鍵詞: 聚麩醯胺
英文關鍵詞: polyglutamine
DOI URL: https://doi.org/10.6345/NTNU202205616
論文種類: 學術論文
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多由聚麩醯胺擴增造成之神經退化性疾病(polyQ diseases) 之研究中指出TATA box binding protein (TBP) 被蛋白質包涵體捕捉而失去作用。不僅如此,其中一種疾病:第十七型脊髓小腦共濟失調症(SCA17) 正是由TBP本身的聚麩醯胺擴增所引起,進而形成具有神經毒性的蛋白質包涵體並影響下游基因。然而擴增的聚麩醯胺片段如何影響TBP功能,以及功能受到影響的TBP與SCA17的致病機制之間的關係依然不明。為深入探討此致病機制,在本研究中,我們建立新的SCA17果蠅模式,其確實展現出蛋白質聚集、運動能力降低以及壽命減短等退化症狀。此外,聚麩醯胺擴增之TBP不只會形成蛋白質聚集且其本身之DNA結合力以及轉錄活性也較低,聚麩醯胺擴增之TBP更進一步會干擾正常TBP的功能,據此推測TBP功能缺失為第十七型小腦萎縮症之病因之一。TBP突變果蠅顯現類似SCA17模式果蠅之神經退化症狀,且第十七型小腦萎縮症果蠅模式複眼的退化性狀在TBP功能缺失突變背景下更為突出,証實TBP功能之降低為SCA17致病機制的一環。另TBP表現降低更加劇第三型脊髓小腦萎縮症以及亨丁頓氏舞蹈症複眼感光細胞之退化。顯見TBP功能喪失可能為聚麩醯胺擴增所造成之神經退化的共同因子。TBP功能喪失在小鼠胚胎造成細胞凋亡,但原因不明。本研究發現果蠅TBP缺失不只造成神經退化亦能觀察到細胞凋亡,故以果蠅來探討TBP在神經退化與細胞凋亡之關聯。藉由微陣列基因分析篩選出能分解過氧化氫的prx2540-2基因在TBP突變的果蠅頭部中表現顯著減少。在果蠅中降低prx2540-2之表現亦產生類似TBP突變果蠅之神經退化症狀。此外,聚麩醯胺擴增所引起的退化性神經疾病果蠅模式與TBP突變之果蠅其頭部的過氧化氫濃度亦較高。故由TBP功能喪失引起prx2540-2表現下降進而造成的氧化壓力增加可能為聚麩醯胺擴增所造成之神經退化的原因之一。

    TATA box binding protein (TBP) has been implicated in many polygluatmine (polyQ) induced neurodegenerations as it is sequestered and inactivated in polyQ proteins containing inclusions. Unlike most polyQ mediated neuropathies, spinocerebellar ataxia 17 (SCA17) is resulted from the abnormally expanded polyQ tract of TBP itself. Previous studies have shown that polyQ expanded TBP forms neurotoxic inclusions and affects downstream genes. However, how expanded polyQ tracts affect the function of TBP and the link between dysfunction of TBP and SCA17 are not clear. In this study, we generate novel Drosophila models of SCA17 that recapitulate pathological features, including aggregate formation, mobility defects and premature death. In addition to forming neurotoxic aggregates, we showed that polyQ-expanded TBP loses its intrinsic DNA-binding and transcription abilities. Dysfunctional TBP also disrupts the function of normal TBP. Moreover, flies expressing polyQ-expanded TBP exhibited enhanced retinal degeneration and heterozygous dTbp amorph mutant flies exhibited SCA17-like phenotypes, suggesting that loss of TBP function may contribute to SCA17 pathogenesis. We also determined that the downregulation of TBP activity enhances retinal degeneration in the fly models of SCA3 and Huntington’s disease, indicating that the deactivation of TBP is likely to play a common role in polyQ-induced neurodegeneration. Moreover, inactivation of TBP has been reported to cause apoptosis in mice. Nevertheless, the mechanism by which deactivated TBP leads to apoptosis is illusive. We found that Drosophila TBP mutants exhibit both neurodegeneration but also apoptosis phenotypes, indicating that Drosophila is a suitable model for unraveling the links between neurodegeneration and apoptosis. Through gene profiling experiments we have identified that prx2540-2, a peroxiredoxin (Prx) encoded gene whose gene product catalyzes the reduction of hydrogen peroxide (H2O2), is reduced greatly in the heads of dTbp mutants. Down-regulation of prx2540-2 generates similar neuropathies as seen in dTbp mutant flies. In contrast, expression of prx2540-2 reverses the above phenotypes in dTbp mutants, demonstrating that prx2540-2 acts downstream of dTbp. Additionally, the concentration of H2O2 is higher in the brains of dTbp mutants and polyQ disease models. Therefore, downregulation of prx2540-2 may mediate the neurodegeneration in polyQ disorders through increasing the oxidative stress in neuronal tissues.

    Table of Content 中文摘要 2 ABSTRACT 4 INTRODUCTION 6 MATERIALS AND METHODS 14 RESULTS 27 DISCUSSION 49 ACKNOWLEDGEMENT 54 REFERENCES 55 TABLE 64 FIGURES 65

    1. Weber, J.J., et al., From Pathways to Targets: Understanding the Mechanisms behind Polyglutamine Disease. Biomed Res Int, 2014. 2014: p. 701758.
    2. Mohan, R.D., S.M. Abmayr, and J.L. Workman, The expanding role for chromatin and transcription in polyglutamine disease. Curr Opin Genet Dev, 2014. 26c: p. 96-104.
    3. Fiszer, A. and W.J. Krzyzosiak, Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res, 2014. 42(11): p. 6787-810.
    4. Margulis, B.A., et al., Pharmacological protein targets in polyglutamine diseases: mutant polypeptides and their interactors. FEBS Lett, 2013. 587(13): p. 1997-2007.
    5. Ross, C.A., Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron, 2002. 35(5): p. 819-22.
    6. David, D.C., et al., Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol, 2010. 8(8): p. e1000450.
    7. Todd, T.W. and J. Lim, Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells, 2013. 36(3): p. 185-94.
    8. Scherzinger, E., et al., Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4604-9.
    9. Steffan, J.S., et al., The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6763-8.
    10. Li, X.J., et al., A huntingtin-associated protein enriched in brain with implications for pathology. Nature, 1995. 378(6555): p. 398-402.
    11. Kalchman, M.A., et al., HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet, 1997. 16(1): p. 44-53.
    12. Faber, P.W., et al., Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet, 1998. 7(9): p. 1463-74.
    13. Gusella, J.F. and M.E. MacDonald, Huntingtin: a single bait hooks many species. Curr Opin Neurobiol, 1998. 8(3): p. 425-30.
    14. Saudou, F., et al., Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 1998. 95(1): p. 55-66.
    15. Kopito, R.R., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol, 2000. 10(12): p. 524-30.
    16. Morton, A.J., et al., Progressive formation of inclusions in the striatum and hippocampus of mice transgenic for the human Huntington's disease mutation. J Neurocytol, 2000. 29(9): p. 679-702.
    17. Becher, M.W., et al., Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis, 1998. 4(6): p. 387-97.
    18. Taylor, J.P., et al., Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet, 2003. 12(7): p. 749-57.
    19. Lunkes, A. and J.L. Mandel, A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum Mol Genet, 1998. 7(9): p. 1355-61.
    20. Lunkes, A., et al., Properties of polyglutamine expansion in vitro and in a cellular model for Huntington's disease. Philos Trans R Soc Lond B Biol Sci, 1999. 354(1386): p. 1013-9.
    21. Ross, C.A. and M.A. Poirier, Protein aggregation and neurodegenerative disease. Nat Med, 2004. 10 Suppl: p. S10-7.
    22. Treusch, S., D.M. Cyr, and S. Lindquist, Amyloid deposits: protection against toxic protein species? Cell Cycle, 2009. 8(11): p. 1668-74.
    23. Okazawa, H., Polyglutamine diseases: a transcription disorder? Cell Mol Life Sci, 2003. 60(7): p. 1427-39.
    24. Jiang, H., et al., Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum Mol Genet, 2003. 12(1): p. 1-12.
    25. Perez, M.K., et al., Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol, 1998. 143(6): p. 1457-70.
    26. Kazantsev, A., et al., Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11404-9.
    27. Jiang, H., et al., Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis, 2006. 23(3): p. 543-51.
    28. Dunah, A.W., et al., Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science, 2002. 296(5576): p. 2238-43.
    29. van Roon-Mom, W.M., et al., TATA-binding protein in neurodegenerative disease. Neuroscience, 2005. 133(4): p. 863-72.
    30. Martianov, I., S. Viville, and I. Davidson, RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science, 2002. 298(5595): p. 1036-9.
    31. Huang, C.C., et al., Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet, 1998. 24(4): p. 217-33.
    32. van Roon-Mom, W.M., et al., Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res Mol Brain Res, 2002. 109(1-2): p. 1-10.
    33. Yamada, M., S. Tsuji, and H. Takahashi, Pathology of CAG repeat diseases. Neuropathology, 2000. 20(4): p. 319-25.
    34. Zhang, J. and W. Gu, [Advance in research on spinocerebellar ataxia 17]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014. 31(1): p. 44-7.
    35. Nakamura, K., et al., SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet, 2001. 10(14): p. 1441-8.
    36. Fujigasaki, H., et al., CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain, 2001. 124(Pt 10): p. 1939-47.
    37. Zuhlke, C. and K. Burk, Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum, 2007. 6(4): p. 300-7.
    38. Gerber, H.P., et al., Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science, 1994. 263(5148): p. 808-11.
    39. Reid, S.J., et al., Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis, 2003. 13(1): p. 37-45.
    40. Friedman, M.J., et al., Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem, 2008. 283(13): p. 8283-90.
    41. Ren, J., et al., A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet, 2011. 20(17): p. 3424-36.
    42. Lee, L.C., et al., Role of the CCAAT-binding protein NFY in SCA17 pathogenesis. PLoS One, 2012. 7(4): p. e35302.
    43. Chen, C.M., et al., SCA17 repeat expansion: mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications. Clin Chim Acta, 2010. 411(5-6): p. 375-80.
    44. Lee, L.C., et al., Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis. Clin Chim Acta, 2009. 400(1-2): p. 56-62.
    45. Friedman, M.J., et al., Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci, 2007. 10(12): p. 1519-28.
    46. Huang, S., et al., Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain, 2011. 134(Pt 7): p. 1943-58.
    47. Yang, S., et al., Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron, 2014. 81(2): p. 349-65.
    48. Hotchkiss, R.S., et al., Cell death. N Engl J Med, 2009. 361(16): p. 1570-83.
    49. Friedlander, R.M. and J. Yuan, ICE, neuronal apoptosis and neurodegeneration. Cell Death Differ, 1998. 5(10): p. 823-31.
    50. Yuan, J. and B.A. Yankner, Apoptosis in the nervous system. Nature, 2000. 407(6805): p. 802-9.
    51. Troy, C.M. and G.S. Salvesen, Caspases on the brain. J Neurosci Res, 2002. 69(2): p. 145-50.
    52. Friedlander, R.M., Apoptosis and caspases in neurodegenerative diseases. N Engl J Med, 2003. 348(14): p. 1365-75.
    53. Paulson, H.L., N.M. Bonini, and K.A. Roth, Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci U S A, 2000. 97(24): p. 12957-8.
    54. Gatchel, J.R. and H.Y. Zoghbi, Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet, 2005. 6(10): p. 743-55.
    55. Shao, J. and M.I. Diamond, Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet, 2007. 16 Spec No. 2: p. R115-23.
    56. Nucifora, F.C., Jr., et al., Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 2001. 291(5512): p. 2423-8.
    57. Bae, B.I., et al., p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron, 2005. 47(1): p. 29-41.
    58. Seto, E., et al., Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci U S A, 1992. 89(24): p. 12028-32.
    59. Borza, L.R., A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi, 2014. 118(1): p. 19-27.
    60. Pollari, E., et al., The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci, 2014. 8: p. 131.
    61. Federico, A., et al., Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci, 2012. 322(1-2): p. 254-62.
    62. Dasuri, K., L. Zhang, and J.N. Keller, Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med, 2013. 62: p. 170-85.
    63. Gandhi, S. and A.Y. Abramov, Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev, 2012. 2012: p. 428010.
    64. Halliwell, B., Oxidative stress and neurodegeneration: where are we now? J Neurochem, 2006. 97(6): p. 1634-58.
    65. Poole, L.B. and K.J. Nelson, Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol, 2008. 12(1): p. 18-24.
    66. Radyuk, S.N., et al., The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med, 2001. 31(9): p. 1090-100.
    67. Park, J., et al., 2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Int J Cell Biol, 2014. 2014: p. 715867.
    68. Rabilloud, T., et al., Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem, 2002. 277(22): p. 19396-401.
    69. Rhee, S.G., H.Z. Chae, and K. Kim, Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med, 2005. 38(12): p. 1543-52.
    70. Salzano, S., et al., Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A, 2014. 111(33): p. 12157-62.
    71. Power, J.H., et al., Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology. Acta Neuropathol, 2008. 115(6): p. 611-22.
    72. Kim, S.H., et al., Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl, 2001(61): p. 223-35.
    73. Lee, Y.M., et al., Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J Biol Chem, 2008. 283(15): p. 9986-98.
    74. Qu, D., et al., Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron, 2007. 55(1): p. 37-52.
    75. De Simoni, S., J. Goemaere, and B. Knoops, Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+. Neurosci Lett, 2008. 433(3): p. 219-24.
    76. Angeles, D.C., et al., Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet, 2014. 23(12): p. 3157-65.
    77. Hirth, F., Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets, 2010. 9(4): p. 504-23.
    78. Lu, B., Recent advances in using Drosophila to model neurodegenerative diseases. Apoptosis, 2009. 14(8): p. 1008-20.
    79. Lu, B. and H. Vogel, Drosophila models of neurodegenerative diseases. Annu Rev Pathol, 2009. 4: p. 315-42.
    80. Cauchi, R.J. and M. van den Heuvel, The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis, 2006. 3(6): p. 338-56.
    81. Ambegaokar, S.S., B. Roy, and G.R. Jackson, Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis, 2010. 40(1): p. 29-39.
    82. Casci, I. and U.B. Pandey, A fruitful endeavor: Modeling ALS in the fruit fly. Brain Res, 2014.
    83. Navarro, J.A., et al., Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson's disease in Drosophila. J Neurochem, 2014. 131(3): p. 369-82.
    84. Prussing, K., A. Voigt, and J.B. Schulz, Drosophila melanogaster as a model organism for Alzheimer's disease. Mol Neurodegener, 2013. 8: p. 35.
    85. Krench, M. and J.T. Littleton, Modeling Huntington disease in Drosophila: Insights into axonal transport defects and modifiers of toxicity. Fly (Austin), 2013. 7(4): p. 229-36.
    86. Green, E.W. and F. Giorgini, Choosing and using Drosophila models to characterize modifiers of Huntington's disease. Biochem Soc Trans, 2012. 40(4): p. 739-45.
    87. Reiter, L.T., et al., A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res, 2001. 11(6): p. 1114-25.
    88. Essers, M.A., et al., FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J, 2004. 23(24): p. 4802-12.
    89. Wang, M.C., D. Bohmann, and H. Jasper, JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell, 2005. 121(1): p. 115-25.
    90. Huang, H. and D.J. Tindall, Dynamic FoxO transcription factors. J Cell Sci, 2007. 120(Pt 15): p. 2479-87.
    91. Kops, G.J., et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002. 419(6904): p. 316-21.
    92. Wang, M.C., D. Bohmann, and H. Jasper, JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell, 2003. 5(5): p. 811-6.
    93. Dhanasekaran, D.N. and E.P. Reddy, JNK signaling in apoptosis. Oncogene, 2008. 27(48): p. 6245-51.
    94. Brand, A.H. and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 1993. 118(2): p. 401-15.
    95. Verheyen, E.M., et al., Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics, 1996. 144(3): p. 1127-41.
    96. Studier, F.W., Protein production by auto-induction in high density shaking cultures. Protein Expr Purif, 2005. 41(1): p. 207-34.
    97. Grove, A., et al., Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA Box. J Mol Biol, 1998. 282(4): p. 731-9.
    98. Iwasaki, T., et al., Liquid chemiluminescent DNA pull-down assay to measure nuclear receptor-DNA binding in solution. Biotechniques, 2008. 45(4): p. 445-8.
    99. Chang, C. and J.D. Gralla, Properties of initiator-associated transcription mediated by GAL4-VP16. Mol Cell Biol, 1993. 13(12): p. 7469-75.
    100. Abrams, J.M., et al., Programmed cell death during Drosophila embryogenesis. Development, 1993. 117(1): p. 29-43.
    101. Chang, Y.C., et al., Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet, 2011. 7(2): p. e1001288.
    102. Wang, Y.C., et al., Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12). J Biol Chem, 2011. 286(24): p. 21742-54.
    103. Todd, A.M. and B.E. Staveley, Novel assay and analysis for measuring climbing ability in Drosophila. Drosophila Infor. Serv., 2004. 87: p. 101-7.
    104. Yu, H.J., et al., Sympathetic vesicovascular reflex induced by acute urinary retention evokes proinflammatory and proapoptotic injury in rat liver. Am J Physiol Renal Physiol, 2005. 288(5): p. F1005-14.
    105. Lin, B.R., et al., Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling. J Biomed Sci, 2009. 16: p. 35.
    106. Invernizzi, G., et al., The relationship between aggregation and toxicity of polyglutamine-containing ataxin-3 in the intracellular environment of Escherichia coli. PLoS One, 2012. 7(12): p. e51890.
    107. Schaffar, G., et al., Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell, 2004. 15(1): p. 95-105.
    108. Yun, H.M., et al., PRDX6 Exacerbates Dopaminergic Neurodegeneration in a MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol, 2014.
    109. Schols, L., et al., Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol, 2004. 3(5): p. 291-304.
    110. Chen, C.M., et al., Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res, 2005. 78(2-3): p. 131-6.
    111. Wild, E.J., et al., Huntington's disease phenocopies are clinically and genetically heterogeneous. Movement Disorders, 2008. 23(5): p. 716-720.
    112. Stevanin, G., et al., Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain, 2003. 126(Pt 7): p. 1599-603.
    113. Stevanin, G. and A. Brice, Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum, 2008. 7(2): p. 170-8.
    114. Jackson-Fisher, A.J., et al., A role for TBP dimerization in preventing unregulated gene expression. Mol Cell, 1999. 3(6): p. 717-27.
    115. Slepko, N., et al., Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins. Proc Natl Acad Sci U S A, 2006. 103(39): p. 14367-72.
    116. Gil-Mohapel, J., P.S. Brocardo, and B.R. Christie, The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates? Curr Drug Targets, 2014. 15(4): p. 454-68.
    117. Harrison, F.E., G.L. Bowman, and M.C. Polidori, Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients, 2014. 6(4): p. 1752-81.
    118. Fata, G.L., P. Weber, and M.H. Mohajeri, Effects of Vitamin E on Cognitive Performance during Ageing and in Alzheimer's Disease. Nutrients, 2014. 6(12): p. 5453-5472.
    119. Beydoun, M.A., et al., Dietary Antioxidant Intake and Its Association With Cognitive Function in an Ethnically Diverse Sample of US Adults. Psychosom Med, 2014.
    120. Shen, W.X., et al., TGF-beta1 Protection against Abeta1-42-Induced Neuroinflammation and Neurodegeneration in Rats. Int J Mol Sci, 2014. 15(12): p. 22092-108.
    121. Russo, I., L. Bubacco, and E. Greggio, LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J Neuroinflammation, 2014. 11: p. 52.
    122. Urrutia, P.J., N.P. Mena, and M.T. Nunez, The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol, 2014. 5: p. 38.
    123. Wang, P., et al., Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol, 2014. 72(3-4): p. 249-54.
    124. Dassati, S., A. Waldner, and R. Schweigreiter, Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging, 2014. 35(7): p. 1632-42.
    125. Yoshimura, A., et al., [Peroxiredoxin triggers post-ischemic inflammation]. Seikagaku, 2013. 85(3): p. 179-86.
    126. Kunze, A., et al., Peroxiredoxin 5 (PRX5) is correlated inversely to systemic markers of inflammation in acute stroke. Stroke, 2014. 45(2): p. 608-10.

    下載圖示
    QR CODE