簡易檢索 / 詳目顯示

研究生: 王彥涵
Wang, Yan-Han
論文名稱: 基於教與學最佳化策略之適應性混合模糊PID控制應用於音圈馬達運動平台
Adaptive Compound Fuzzy PID Control for a VCMs-based Motion Stage Using Teaching–Learning-based Optimization Strategy
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 李政道
Lee, Jeng-Dao
談光雄
Tan, Kuang-Hsiung
藍建武
Lan, Chien-Wu
陳瑄易
Chen, Syuan-Yi
口試日期: 2024/01/10
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 教與學演算法適應性控制模糊控制PID控制器音圈馬達數位訊號處理器
英文關鍵詞: Teaching-Learning-Based Optimization, Adaptive Control, Fuzzy Control, Voice Coil Motor, Digital Signal Processor
DOI URL: http://doi.org/10.6345/NTNU202400178
論文種類: 學術論文
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目標為針對音圈馬達運動平台設計一適應性混合模糊比例-積分-微分控制策略,使該平台具備優異之定位精度與強健性能。首先說明音圈馬達運動平台的系統架構及運作原理,經由系統鑑別推導出馬達數學模型以及系統參數,將回授訊號達到或保持在理想值使系統變得更加準確且穩定。接著,以模糊理論設計一個模糊PID(Fuzzy Proportional–Integral–Derivative, FPID)控制器,透過動態調整控制增益的方式改善系統穩定度,進一步提升動態響應和強健性。之後,為了進一步提升系統的抗干擾能力,本研究設計一個基於教與學演算法最佳化模糊歸屬函數的適應性混和模糊控制器,讓控制器能夠隨著輸入誤差動態調整歸屬函數的區間,使模糊系統在相同誤差下能反應出更精確的歸屬度,解模糊化得到前饋控制力將進一步提高系統的穩定度並抑制外部干擾的影響。本論文以數位訊號處理器實現上述控制策略並比較兩種追蹤軌跡,最後由實驗結果得知最佳化模糊歸屬函數的適應性混和模糊控制器相比於傳統PID控制器的控制性能,加入雜訊的窗形軌跡平均誤差改善58.28 %,加入雜訊的花瓣形軌跡平均誤差改善66.32 %,且相比於FPID控制器加入雜訊的窗形軌跡平均誤差改善29.99 %,加入雜訊的花瓣形軌跡平均誤差改善45.13 %,證實控制器確實能有效進行音圈馬達定位控制,也使系統在具有干擾的環境下保持穩定性和強健性。

    The object of this study is to develop an adaptive compound fuzzy proportional-integral-derivative (ACFPID) control strategy for controlling the mover position of a voice coil motor (VCM)-based X-Y motion stage. The objectives of the study are to apply several different controllers to reduce the stability error and to compare the effects of these controllers. First, the operating principle and dynamics of the VCM-based X-Y motion stage are described. Then, a design of the fuzzy proportional-integral-derivative (FPID) control is introduced on the basis of fuzzy theory. With the additional degree of freedom to the control system parameters, the FPID control can improve the control responses and robustness of the conventional proportional-integral-derivative (PID) control. In order to improve the chattering of the system, an adaptive compound fuzzy control is proposed based on adaptive control, which can solve oscillation phenomenon of the traditional FPID. However, tuning these extra fuzzy membership function (MF) operators increases the complexity of the control system design. In this regard, the adaptive compound fuzzy feedforward controller is further proposed in which interdependent MF parameters are all online optimally determined via a Teaching-Learning-Based Optimization (TLBO). In the TLBO, the Teacher Phase and Learner Phase are dynamically adjusted to regulate the abilities of global and local searches. The summation of integral absolute errors in X-axis and Y-axis of the VCM-based X-Y motion stage during tracking process is chosen as a performance index for minimization. In this study, all of the control strategy were implemented via the digital signal processor. In addition, two reference trajectories and three different control strategies were provided to evaluate the control performances of control systems. Finally, the experimental results can verify the designed controller. When compared with the control performance of the traditional PID controller, the proposed new controller improves the average trajectory error of the window trajectory by 58.28 % after adding noise. Additionally, the average trajectory error of the flower trajectory is enhanced by 66.33 % after adding noise. In comparison to the control performance of the FPID controller, the average trajectory error of the window trajectory is improved by 29.99 % after adding noise. Similarly, the average trajectory error of the flower trajectory is enhanced by 45.13 % after adding noise. The experimental results can be verified that the designed controller can effectively control the voice coil motor positioning platform.

    摘要 i ABSTRACT ii 誌謝 iv 目 錄 v 表目錄 vii 圖目錄 ix 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 5 1.4 研究方法 5 1.5 研究架構 6 第2章 音圈馬達實驗平台介紹 7 2.1 音圈馬達的結構與運作原理 7 2.2 實驗平台設計 11 2.3 數位訊號處理器軟體規劃 17 2.4 系統鑑別 18 2.5 音圈馬達動態模型 20 第3章 模糊控制理論 22 3.1 簡介 22 3.2 模糊控制系統 24 第4章 模糊PID之音圈馬達控制系統 27 4.1 簡介 27 4.2 模糊控制系統設計 27 4.3 模糊PID控制器設計 31 第5章 最佳化模糊PID之音圈馬達控制系統 36 5.1 簡介 36 5.2 教與學演算法概論 36 5.2.1 教與學演算法之數學模型 37 5.2.2 教與學演算法流程 38 5.3 適應性混和模糊PID控制器 41 5.4 基於教與學最佳化策略之適應性混合模糊PID控制器設計 43 第6章 模擬結果與討論 45 6.1 音圈馬達控制模擬 45 6.2 PID控制模擬 48 6.3 模糊PID控制模擬 53 6.4 基於教與學最佳化策略之適應性混合模糊PID控制模擬 57 6.5 結果討論 61 第7章 實驗結果與結論 70 7.1 音圈馬達運動平台構圖 70 7.2 PID控制 74 7.3 模糊PID控制 77 7.4 基於教與學最佳化策略之適應性混合PID控制 81 7.5 結果討論 86 第8章 結論與未來展望 95 參考文獻 97 自傳 103 學術成就 104

    [1] M. Yang, C. Zhang, X. Huang, S. Chen and G. Yang, “A Long-Stroke Nanopositioning Stage With Annular Flexure Guides,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1570-1581, 2022.
    [2] S. Yabui, T. Atsumi and T. Inoue, “Servo Controller Design for Triple-Stage Actuator in HDD to Compensate for High-Frequency Fan Vibration,” IEEE Transactions on Magnetics, vol. 58, no. 1, pp. 1-11, 2022.
    [3] F. Xing, J. W. Kwon, M. Li and B. I. Kwon, “A Rotary-Linear SPM Voice Coil Motor With PM Flux Bridges for Output Performance Improvement,” IEEE Access, vol. 9, pp. 57054-57063, 2021.
    [4] C. L. Hsieh and C. S. Liu, “Design of a Voice Coil Motor Actuator With L-Shape Coils for Optical Zooming Smartphone Cameras,” IEEE Access, vol. 8, pp. 20884-20891, 2020.
    [5] T. Atsumi and S. Yabui, “Quadruple-Stage Actuator System for Magnetic-Head Positioning System in Hard Disk Drives,” IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9184-9194, 2020.
    [6] Z. Lyu, Q. Xu and L. Zhu, “Design of a Compliant Vertical Micropositioning Stage Based on Lamina Emergent Mechanisms,” IEEE/ASME Transactions on Mechatronics, vol. 28, no. 4, pp. 2131-2141, 2023.
    [7] N. Zhou, W. Deng, X. Yang, J. Yao, D. Fan and H. Li, “Robust Adaptive Asymptotic Tracking Control of Voice Coil Motor Based Direct Drive Valve,” CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), pp. 1-6, 2021.
    [8] J. Chen, Q. Hu, Z. Lin and H. He, “Adaptive Sliding Mode Control for Fast Steering Mirror Based on RBF Neural Network Self-Learning,” Chinese Control and Decision Conference (CCDC), pp. 1927-1932, 2021.
    [9] J. Luo, W. Wu and L. Ge, “Vertical Dynamics of Voice Coil Motor Active Suspension with Active Disturbance Rejection Control,” IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1919-1924, 2019.
    [10] B. Zhao, Y. Liu, D. Jia, T. Zhang, H. Zhang, H. Yan, and X. Lu, “Application of Fuzzy Sliding Mode Control in Voice Coil Motor Control System,” Journal of Physics, vol. 2281, no. 1, pp. 012009, 2022.
    [11] B. Wang, C. Liu, Z. Wu and J. Hu, “LCL Filter Design and Implementation for Improving Transient Position Tracking Control Performance of Voice Coil Motor,” IEEE Access, vol. 8, pp. 4963-4971, 2020.
    [12] Y. Qiao, T. Zhao and X. Gui, “Overview of Position Servo Control Technology and Development of Voice Coil Motor,” CES Transactions on Electrical Machines and Systems, vol. 6, no. 3, pp. 269-278, 2022.
    [13] H. He, Y. He, H. Liu and J. Zhao, “Research on PID Parameter Tuning and Compound Control of precise XY Motion Platform,” International Conference on Electronic Packaging Technology (ICEPT), pp. 1-5, 2022.
    [14] X. G. Fan, Y. L. Zhi, C. Liao, J. Shen and X. Wang, “A Nano Positioning Platform for STM and Its Compound Control Algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-9, 2022.
    [15] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965
    [16] W. J. Tang and S. Y. Cao, “A Fast Realization Method of Fuzzy PID Control for DC Motor,” Chinese Control Conference (CCC), pp. 5131-5135, 2018.
    [17] H. T. Zeng and J. Yuan, “A Fuzzy Adaptive PID System of DC Brush Motor for Snake Arm Robot,” International Conference on Electrical Engineering and Control Science (IC2ECS), pp. 1012-1017, 2022.
    [18] M. N. Mansor, A. A. A. Samat, A. I. Tajudin, N. A. Salim, K. Daud and S. F. A. Shukor, “Self Tuning of PI Controller for Speed Control of DC Motor by Using Fuzzy Logic Controller,” IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1-6, 2021.
    [19] S. Li and X. Ren, “Design of Controller for Linear Motor Servo System,” International Conference on Systems and Informatics (ICSAI), pp. 76-80, 2019.
    [20] S. Y. Chen, H. H. Chiang, T. S. Liu and C. H. Chang, “Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 741-752, 2019.
    [21] H. Liu, Y. He and J. He, “Research on Incremental Adaptive Fuzzy PID Algorithm for Permanent Magnet Synchronous Motor System,” International Conference on Electronic Packaging Technology (ICEPT), pp. 1-5, 2022.
    [22] J. P. de Moura, J. V. d. F. Neto and P. H. M. Rêgo, “A Neuro-Fuzzy Model for Online Optimal Tuning of PID Controllers in Industrial System Applications to the Mining Sector,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 8, pp. 1864-1877, 2020.
    [23] Y. Chu, J. Fei and S. Hou, “Adaptive Neural Backstepping PID Global Sliding Mode Fuzzy Control of MEMS Gyroscope,” IEEE Access, vol. 7, pp. 37918-37926, 2019.
    [24] J. Kluska and T. Żabiński, “PID-Like Adaptive Fuzzy Controller Design Based on Absolute Stability Criterion,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 3, pp. 523-533, 2020.
    [25] R.V. Rao, V.J. Savsani, and D.P. Vakharia, “Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303-315, 2011.
    [26] K. Haghdar, “Optimal DC Source Influence on Selective Harmonic Elimination in Multilevel Inverters Using Teaching–Learning-Based Optimization,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 942-949, 2020.
    [27] D. Lei, L. Gao and Y. Zheng, “A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop,” IEEE Transactions on Engineering Management, vol. 65, no. 2, pp. 330-340, 2018.
    [28] M. Shouran and M. Habil, “Tuning of PID Controller Using Different Optimization Algorithms for Industrial DC Motor,” International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 756-759, 2021.
    [29] https://www.akribis-sys.de/uploads/images/produkte/panelfotos/avm.jpg
    [30] https://www.acepillar.com/files/akribis_avm-series_brochure_en.pdf
    [31] https://www.electricaltechnology.org/2020/12/flemings-left-right-hand-rule.html
    [32] https://www.elmomc.com/product/cello/
    [33] https://www.celeramotion.com/wp-content/uploads/2019/05/LP-Data_Sheet-Mercury_II-M1600.pdf
    [34] 楊孟晨,基於最佳化分數階模糊PID控制之X-Y音圈馬達定位平台,國立台灣師範大學電機工程學系碩士論文,台北市,2019。
    [35] https://www.ti.com/lit/ds/symlink/tms320f28377d.pdf?ts=1699181893781
    [36] https://www.mcudsp.com.tw/C2000/easyDSP-F28377xDAQ.html
    [37] S. Y. Chen and C. Y. Lee, “Digital signal processor based intelligent fractional‐order sliding‐mode control for a linear voice coil actuator,” IET Control Theory & Applications, vol. 11, no. 8, pp. 1282-1292, 2017.
    [38] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings of the IEEE, vol. 83, no. 3, pp. 345-377, 1995.
    [39] 黃宏原,具模糊七階磁滯與模糊PID速度控制器之直接轉矩控制系統晶片設計與實現,國立臺北科技大學電機工程系碩士論文,台北市,2016。
    [40] 劉世民,應用PID控制、模糊邏輯控制和模糊PID控制實現串聯式機械手臂之位置控制,國立台灣科技大學自動化及控制研究所碩士論文,台北市,2013。
    [41] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy Control Systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676-697, 2006.
    [42] A. T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares and M. Sugeno, “Fuzzy Control Systems: Past, Present and Future,” IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 56-68, 2019.
    [43] T. Wang, H. Wang, H. Hu, X. Lu, and S. Zhao, “An adaptive fuzzy PID controller for speed control of brushless direct current motor,” SN Applied Sciences, vol. 4, no. 3, pp. 71, 2022.
    [44] 陳冠瑜,基於TLD及模糊PID控制器之四旋翼機自主追隨系統設計,國立勤益科技大學電機工程學系碩士論文,台中市,2017。
    [45] R. V. Rao, and V. D. Kalyankar, “Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm,” Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 524-531, 2013.
    [46] R. V. Rao, and V. Patel, “Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1147-1162, 2013.
    [47] 林祐偉,基於教與學優化演算法之適應性階層式模糊控制應用於鋰電-超級電容混合電力系統,國立臺灣師範大學電機工程學系碩士論文,台北市,2022。
    [48] S. Ahmadi, D. A. Haghighi, M. Kheyrdoust, F. Dini and K. Nasim, “A The Application of Optimum Self-Tuning Fuzzy Logic Controllers in Multi-Area Power Systems Including UPFC,” Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 187-194, 2020.
    [49] A. Mourad and Z. Youcef, “Fuzzy-PI Controller Tuned With ICA: applied to 2 DOF robot control trajectory,” International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1-6, 2022.
    [50] S. Chafea, K. Kamel and B. Mohamed, “Optimized FLPID using TLBO algorithm: Applied to Quadrotor (UAV) system,” International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), pp. 1-6, 2023.

    無法下載圖示 電子全文延後公開
    2029/01/20
    QR CODE