研究生: |
張嘉心 Chang, Chia-Hsin |
---|---|
論文名稱: |
學習順序與鷹架策略對高低先備知識國中生以擴增實境輔助電流磁效應學習成效、動機及態度之影響 Effects of Learning Sequence, Scaffolding Strategy and Prior Knowledge on Junior High School Students' Learning of Electromagnetic Effects through AR-Based Learning |
指導教授: |
陳明溥
Chen, Ming-Puu |
口試委員: |
楊接期
Yang, Jie-Chi 顏榮泉 Yen, Jung-Chuan 陳明溥 Chen, Ming-Puu |
口試日期: | 2021/08/25 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 229 |
中文關鍵詞: | 電流磁效應概念 、擴增實境 、5E學習環 、學習順序 、鷹架策略 |
英文關鍵詞: | electromagnetic effects, augmented reality, 5E learning cycle, learning sequence, scaffolding strategies |
DOI URL: | http://doi.org/10.6345/NTNU202101522 |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討學習順序(先探索後學習、先學習後探索)及鷹架策略(策略鷹架、程序鷹架)對不同先備知識(高先備知識、低先備知識)的國中七年級學習者,在電流磁效應單元擴增實境數位遊戲學習活動的成效、動機與態度之影響。研究對象為新北市某國中七年級學習者,有效樣本為104人。本研究採因子設計之準實驗研究法,自變項為學習順序、鷹架策略及先備知識,學習順序依據實驗過程中探索與學習的先後順序差異分為「先探索後學習」與「先學習後探索」;鷹架策略依據輔助學習的方法差異分為「策略鷹架」與「程序鷹架」;先備知識依據學習成效測驗前測分數分為「高先備知識」與「低先備知識」。依變項為電流磁效應學習成效(知識記憶、知識理解、知識應用)、科學學習動機(價值成份、期望成份、科技接受度)及科學學習態度(學習自信心、學習喜好、學習焦慮、學習過程、學習方法、有用性)。
研究結果發現:(1)就學習成效而言,在「知識記憶」與「知識理解」面向,接受程序鷹架時,高先備知識學習者的表現優於低先備知識學習者;對於低先備知識學習者而言,接受策略鷹架的表現優於程序鷹架;(2)在「知識應用」面向,先學習後探索的條件下,高先備知識學習者的表現優於低先備知識學習者;對於低先備知識學習者而言,先探索後學習的表現優於先學習後探索。(3)就學習動機而言,各實驗組學習者對於科學學習皆保持正向動機,其中接受程序鷹架之學習者有較高的參與動機表現。(4)就學習態度而言,各實驗組學習者對於科學學習皆抱持正向態度,其中程序鷹架組的態度表現顯著優於策略鷹架組;而在「學習自信心」面向,先探索後學習的條件下,高先備知識學習者有較正向的態度表現。
The purpose of this study was to explore effects of types of learning sequence, scaffolding strategy, and levels of prior knowledge on junior high school students’ learning performance, motivation, and attitude in learning of electromagnetic effects through AR-based learning activity. Participants were seventh graders from a junior high school in the northern part of Taiwan, and the effective sample size was 104. A quasi-experimental design was adopted. The independent variables were types of learning sequence (“Explore-Learn” vs. “Learn-Explore”), types of scaffolding strategy (strategic scaffolding vs. procedural scaffolding), and levels of prior knowledge (high vs. low). The dependent variables included students’ learning performance, motivation, and attitude.
The results manifested that (a) for remembering and comprehension performance, while receiving the procedural scaffolding, the high prior knowledge group outperformed the low prior knowledge group; (b) for application performance, while receiving the “Learn-Explore,” the high prior knowledge group outperformed the low prior knowledge group; as for low prior knowledge learners, the “Explore-Learn” group outperformed the “Learn-Explore” group. (c) In terms of learning motivation, participants showed positive motivation, and the procedural scaffolding group revealed a higher degree of motivation than the strategic scaffolding group. (d) As for learning attitude, participants showed a positive attitude. Among all the participants, the procedural scaffolding groups’ attitude was superior to the strategic scaffolding group. In terms of self-confidence of learning, on the condition of “Explore-Learn,” learners with a high level of prior knowledge revealed a more positive attitude than the learners with a low level of prior knowledge.
中文部分
王美芬、熊召弟(1995)。國民小學自然科教材教法。臺北市:心理。
王嘉德(2004)。以動態評量探究國小五年級學童「電與磁」的概念學習(未出版碩士論文)。國立臺北師範學院數理教育研究所,臺北市。
白佩宜、許瑛昭(2011)。探討不同探究式教學法對高一生科學探究能力與學習環境觀感之影響。課程與教學,14(3),123-156。
任欣垚(2012)。數位學習環境融入體驗式學習策略與先備知識對國小學生質因數概念學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
朱秀美(2012)。數位遊戲中鷹架呈現模式與酬賞機制對玩家遊戲行為的影響(未出版碩士論文)。國立交通大學科技與數位學習學程,新竹市。
朱思翰(2013)。不同先備知識小學學生於資訊課進行分享式數位筆記活動之路徑分析研究(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
余民寧(1997)。有意義的學習:概念構圖之研究。臺北市:商鼎文化。
余民寧(2011)。教育測驗與評量:成就測驗與教學評量(第三版)。臺北市:心理。
吳穎沺(2003)。建構主義式的科學學習活動對國小高年級學生認知結構之影響(未出版碩士論文)。國立交通大學教育研究所,新竹市。
呂郁欣(2017)。引導策略與學習順序對國小機器人程式設計學習成效及態度之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
李京翰(2012)。數位學習環境之回饋策略與性別對國中生化學酸鹼中和單元學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
李幸玟(2010)。前導組體型式與先備知識在多媒體學習成效與認知負荷上的影響──以國中地理科為例(未出版碩士論文)。國立嘉義大學教育科技研究所,嘉義市。
李莘怡(2006)。溶解迷思概念之概念改變研究(未出版碩士論文)。國立臺中教育大學自然科學教育學系,臺中市。
沈奕樟(2013)。5E學習環教學模式奈米特性教材對高一學生探究能力與學習成效之影響(未出版碩士論文)。國立彰化師範大學物理學系,彰化縣。
阮惠嵐(2007)。應用電腦輔助學習鷹架於國中自然與生活科技之學習成效與態度探討:以單元「力」為例(未出版碩士論文)。國立臺灣師範大學資訊教育學系,臺北市。
林生傳(1998)。建構主義的教學評析。課程與教學季刊,1(3),1-14。
林志隆、林芳如(2020)。應用擴增實境於自然科教學對學生學習成效及學習動機之影響-以國中電磁學為例。國立臺灣科技大學人文社會學報,16(4),345-367。
林佳臻(2017)。探討口語練習回饋形式與先備知識於數位遊戲式英語學習環境對學習成效與口語焦慮之影響(未出版碩士論文)。國立中央大學網路學習科技研究所,桃園市。
林明宏(2013)。多重表徵轉譯融入五E學習環教學在九年級力矩與轉動單元學習成效之研究(未出版碩士論文)。國立彰化師範大學物理學系,彰化縣。
林明軫(1994)。國小學童磁鐵與磁力性質迷思概念之初探。臺南師院學生學刊,15,223-250。
林東昇(2016)。探討多重表徵教學對八年級學生複習酸鹼鹽單元的學習成效與心智模式建立的影響(未出版碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
林思汝(2014)。擴增實境遊戲式學習與編碼策略對國小學生槓桿原理學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
林禹伶(2019)。分析科學實驗模擬軟體輔助教學之成效–以五年級自然與生活科技水溶液單元為例(未出版碩士論文)。國立臺北教育大學自然科學教育學系碩士班,臺北市。
林淑靜(2006)。國中自然與生活科技領域實施開放式探究教學之研究-以「磁與電流」單元為例(未出版碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
林勝賢(2010)。探討擴增實境融入行動學習對國小學生自然與生活科技學習動機與學習成就的影響(未出版碩士論文)。國立臺南大學數位學習科技學系,臺南市。
邱奕華(2011)。科學史與科學概念教學順序對學生科學認識觀與學習動機之影響(未出版碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱寶萱(2014)。遊戲式探索學習模式與學習型態對國小生外來種生物概念學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
施易青(2008)。運用TEAM科學教室實施小組合作對國三生「電流磁效應」學習成效之研究(未出版碩士論文)。國立彰化師範大學物理學系,彰化縣。
施保成(2011)。以3D電腦輔助設計軟體Google SketchUp融入國小複合形體表面積教學對學生數學學習成效之研究(未出版碩士論文)。國立臺灣師範大學資訊教育學系在職進修碩士班,臺北市。
施柏豪(2017)。數位學習環境與教學模式對高中生單極馬達實驗學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
唐健文(2001)。中學生「電流磁效應」及「感應電流」迷思概念及二段式診斷工具之研究(未出版碩士論文)。國立高雄師範大學物理學系,高雄市。
徐日薇(2014)。數位學習環境與學習引導策略對國小晝夜與四季課程學習成效之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
徐新逸(1998)。情境學習對教學革新之回應。研習資訊雙月刊,15(1),16-24。
翁韻婷(2011)。角色扮演遊戲融入5E學習環對國中化學式相關概念學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
張宗義(2003)。POE教學對國小學生水溶液概念改變之研究(未出版碩士論文)。國立臺北師範學院數理教育研究所,臺北市。
張春興(1989)。張氏心理學辭典。臺北市:東華書局。
張春興(2000)。教育心理學:三化取向的理論與實踐。臺北市:東華書局。
張家舜(2012)。高職學生對擴增實境學習系統接受度之研究─以核子科學生活與安全課程為例(未出版碩士論文)。國立臺灣師範大學圖文傳播學系,臺北市。
張晉嘉(2011)。資訊融入5E探究式教學於國中電磁學之行動研究(未出版碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
張書豪(2017)。探索學習模式與提示策略對國中生英語生字與閱讀擴增實境學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
張偵益(2013)。應用5E探索式擴增實境實驗遊戲對不同學習風格國中生化學反應單元學習成效之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
張國恩(2001)。從學習科技的發展看資訊科技融入教學之內涵。資訊教育課程設計(何榮桂、戴維揚主編,頁135-161)。臺北市:師大書苑。
張勝傑(2019)。結合擴增實境與數位遊戲式學習應用於英文單字教學之開發與初步評估(未出版碩士論文)。國立中央大學網路學習科技研究所,桃園市。
張錫勳(2020)。國中科學探究教學之教師實務知識研究(未出版博士論文)。國立臺灣師範大學課程與教學研究所,臺北市。
張耀弼(2005)。高職冷凍空調科學生之他人期望、學習環境滿意度、學習態度與學業成就之研究(未出版碩士論文)。國立臺灣師範大學工業教育學系,臺北市。
教育部(2018)。十二年國民基本教育課程綱要自然科學領域課綱。取自https://www.naer.edu.tw/upload/1/16/doc/820/十二年國民基本教育課程綱要國民中小學暨普通型高級中等校-自然科學領域.pdf。
許文清(2013)。工作範例之教學順序對學生學習成效與認知負荷影響之研究-以面積覆蓋活動為例(未出版碩士論文)。國立臺北教育大學數學暨資訊教育學系,臺北市。
許燕欣(2013)。不同數位模擬對國小電磁作用單元體驗式學習之成效與動機的影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
郭映汝(2013)。提示策略與學習風格對國中生板塊運動擴增實境學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
郭重吉(1988)。從認知觀點探討自然科學的學習。彰師大教育學院學報,13,351-378。
郭靜萍(2015)。以POE教學策略對國小六年級學童物質分離概念學習的成效評估(未出版碩士論文)。朝陽科技大學應用化學系,臺中市。
陳沛瑩(2004)。以POE教學策略探究國小六年級學童「熱」迷思概念及概念改變之研究(未出版碩士論文)。臺北市立師範學院科學教育研究所,臺北市。
陳芊瑋(2009)。運用資訊科技融入探究教學於自然與生活科技領域之行動研究(未出版碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
陳明鈺(2017)。資訊科技融入5E探究教學對七年級學生生物科學習成就與學習態度之影響─以「血液循環系統」為例(未出版碩士論文)。國立臺南大學教育學系教育經營與管理碩士班,臺南市。
陳勁志(2005)。探討空間能力對高一學生電磁學學習成就之影響(未出版碩士論文)。國立高雄師範大學科學教育研究所,高雄市。
陳姿諭(2017)。多媒體呈現方式對不同空間能力九年級學生「電流磁效應」學習成效之影響(未出版碩士論文)。國立中正大學教學專業發展數位學習碩士在職專班,嘉義縣。
陳淑玲(2015)。以科學遊戲融入POE教學對學童學習成效影響之研究(未出版碩士論文)。臺北市立大學應用物理暨化學系自然科學教學碩士班,臺北市。
陳裕方、李文德(2005)。5E建構式學習環教學與一般教學法探究「生鏽」概念改變成效之研究。科學教育研究與發展季刊,39,16-38。
陳麗如(2011)。實施「5E學習環教學模式」之行動研究—以高一氧化還原單元為例(未出版碩士論文)。國立臺中教育大學科學應用與推廣學系科學教育碩士學位在職進修專班,臺中市。
彭敏華(2020)。觸覺回饋與鷹架策略對國小學習者擴增實境互動學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
彭懋琳(2003)。國小六年級學童電與磁迷思概念之研究(未出版碩士論文)。國立臺中師範學院自然科學教育研究所,臺中市。
黃若瑜(2016)。認知風格與先備知識於預測、模擬、觀察、解釋科學探究活動之影響(未出版碩士論文)。國立中央大學學習與教學研究所,桃園市。
黃聰惠(2018)。科學態度與科學素養之相關研究。臺灣教育評論月刊,7(7),142-145。
楊心怡(2013)。從認知負荷觀點探討鷹架輔助遊戲式學習於人體血液循環之研究。教育傳播與科技研究,106,65-78。
楊志強(2001)。國小五年級學童「電磁鐵」單元教學之概念改變研究(未出版碩士論文)。國立屏東師範學院數理教育研究所,屏東縣。
楊志隆(2005)。以5E學習環教學模式提昇學童科學態度成效之研究(未出版碩士論文)。國立屏東師範學院數理教育研究所,屏東縣。
楊琇珊(2020)。探討探究教學對國中八年級學生探究能力之影響(未出版碩士論文)。國立交通大學科技與數位學習學程,新竹市。
楊進忠(2005)。以融入動態評量的實作教學策略探究國小六年級學童「電磁作用」概念之概念學習(未出版碩士論文)。國立臺北師範學院自然科學教育研究所,臺北市。
葉誌鑑(2001)。國小高年級學童電磁鐵概念分析之研究(未出版碩士論文)。臺北市立師範學院科學教育研究所,臺北市。
劉嘉茹、侯依伶(2011)。以眼動追蹤技術探討先備知識對科學圖形理解的影響。教育心理學報,43(S),227-249。
歐陽鍾仁(1987)。科學教育概論。臺北市:五南圖書出版公司。
蔡承哲(2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
盧健瑋(2017)。數位學習環境與引導策略對高低先備知識高中生數學遞迴學習成效與動機之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
蕭聖彥(2012)。資訊融入合作學習教學策略提升國中學生電磁學學習成效之研究(未出版碩士論文)。明道大學課程與教學研究所,彰化縣。
謝佳穎(2011)。八年級學生酸鹼鹽與反應速率單元POE教學實施成效之探討(未出版碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
謝宗憲(2007)。探究媒體格式提升七年級學生電腦模擬電化學學習成效(未出版碩士論文)。國立嘉義大學教育科技研究所,嘉義市。
謝慶華、段曉林、靳知勤、陳淑貞(2016)。國中自然與生活科技學習參與量表的發展與相關因素之探討。科學教育學刊,24(3),249-273。
謝靜宜(2019)。POE教學策略應用於奈米科技課程對中小學學生學習成效與學習態度之研究(未出版碩士論文)。國立清華大學課程與教學碩士在職專班,新竹市。
鍾廣翰(2018)。紙本教材導入擴增實境(AR)之應用—以國家文官學院教材為例。T & D飛訊,244,1-32。
英文部分
Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152.
Al Mamun, M. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 103695.
Amelia, R., Handayanto, S. K., & Muhardjito, M. (2016). The influence of V diagram procedural scaffolding in group investigation towards students with high and low prior knowledge. Jurnal Pendidikan IPA Indonesia, 5(1), 108-115.
Ausubel, D. P. (1963). The Psychology of Meaningful Verbal Learning. New York, NY: Grune & Stratton.
Ausubel, D. P. (1964). Some psychological aspects of the structure of knowledge. Education and the Structure of Knowledge. Chicago, IL: Rand MacNally.
Azevedo, R. & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition–Implications for the design of computer-based scaffolds. Instructional Science, 33, 367–379.
Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40(4), 199-209.
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2015). Mobile augmented reality in vocational education and training. Procedia Computer Science, 75, 49-58.
Balci, S., Cakiroglu, J., & Tekkaya, C. (2006). Engagement, exploration, explanation, extension, and evaluation (5E) learning cycle and conceptual change text as learning tools. Biochemistry and Molecular Biology Education, 34(3), 199-203.
Banchi, H. & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26.
Barry, T. D., Lyman, R. D., & Klinger, L. G. (2002). Academic underachievement and attention-deficit/hyperactivity disorder: The negative impact of symptom severity on school performance. Journal of School Psychology, 40(3), 259-283.
Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 1-5.
Bishop, A. P. & Bruce, B. C. (2002). Using the web to support inquiry-based literacy development. Journal of Adolescent & Adult Literacy, 45(8), 706-714.
Bloom, B. S. (1956). Taxonomy of Educational Objectives. Vol. 1: Cognitive Domain. New York: McKay.
Borkowski, J. G., Schneider, W., & Pressley, M. (1989). The challenges of teaching good information processing to learning disabled students. International Journal of Disability, Development and Education, 36(3), 169-185.
Bower, P., Kelsey, R., & Moretti, F. (2011). Brownfield action: An inquiry-based multimedia simulation for teaching and learning environmental science. Science Education and Civic Engagement, 3(1), 5-14.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn (Vol. 11). Washington, DC: National academy press.
Bråten, I. & Ferguson, L. E. (2014). Investigating cognitive capacity, personality, and epistemic beliefs in relation to science achievement. Learning and Individual Differences, 36, 124-130.
Brown, P. L. & Abell, S. K. (2007). Project-based science. Science and Children, 45(4), 60.
Bruner, J. S. (1960). The Process of Education. Cambridge MA: Harvard University.
Bulu, S. T. & Pedersen, S. (2012). Supporting problem-solving performance in a hypermedia learning environment: The role of students’ prior knowledge and metacognitive skills. Computers in Human Behavior, 28(4), 1162-1169.
Bybee, R. W. & Landes, N. M. (1990). Science for life & living: An elementary school science program from biological sciences curriculum study. The American Biology Teacher, 52(2), 92-98.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness, and Applications. Colorado Springs: BSCS.
Carmichael, A., Chini, J. J., Gire, E., Rebello, N. S., & Puntambekar, S. (2010, April). Comparing the effects of physical and virtual experimentation sequence on students’ understanding of mechanics. In Paper at the Annual Meeting of the American Educational Research Association. Denver, CO.
Chang, H. Y., Liang, J. C., & Tsai, C. C. (2020). Students’ context-specific epistemic justifications, prior knowledge, engagement, and socioscientific reasoning in a mobile augmented reality learning environment. Journal of Science Education and Technology, 29(3), 399-408.
Chen, S. Y. & Huang, P. R. (2013). The comparisons of the influences of prior knowledge on two game-based learning systems. Computers & Education, 68, 177-186.
Chen, S. Y. & Liu, S. Y. (2020). Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 111, 106418.
Cheng, C. H. & Su, C. H. (2012). A game-based learning system for improving student’s learning effectiveness in system analysis course. Procedia Social and Behavioral Sciences, 31, 669-675.
Cheng, K. H. & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
Cheok, A. D., Hwee, G. K., Wei, L., Teo, J., Lee, T. S., Farbiz, F., & Ping, L. S. (2004). Connecting the real world and virtual world through gaming. In Jacquart R. (Ed.), Building the Information Society (pp. 45-50). Boston, MA: Springer.
Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27-43.
Clark, D. A. (2002). Visions of Development: A Study of Human Values. Cheltenham, UK: Edward Elgar Publishing.
Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24.
Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
Conley, Q., Atkinson, R. K., Nguyen, F., & Nelson, B. C. (2020). MantarayAR: Leveraging augmented reality to teach probability and sampling. Computers & Education, 153, 103895.
Corradi, D., Elen, J., & Clarebout, G. (2012). Understanding and enhancing the use of multiple external representations in chemistry education. Journal of Science Education and Technology, 21(6), 780-795.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
De Jong, T. (2006). Technological advances in inquiry learning. Science, 312(5773), 532–533.
Denham, A. R. (2018). Using a digital game as an advance organizer. Educational Technology Research and Development, 66(1), 1-24.
Devolder, A., van Braak, J., & Tondeur, J. (2012). Supporting self‐regulated learning in computer‐based learning environments: systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557-573.
Dewey, J. (1916). Nationalizing education. Journal of Education, 84(16), 425-428.
Dewey, J. (1938). Experience and Education. New York, NY: Macmillan Publishers.
Dochy, F. J. R. C. (1994). Prior knowledge and learning. In T. Husen, & N. Postlewaithe (Eds.), International Encyclopedia of Education, 2nd Edition. (pp. 4698–4702). Oxford, UK: Pergamon Press.
Dochy, F., Segers, M., & Buehl, M. M. (1999). The relation between assessment practices and outcomes of studies: The case of research on prior knowledge. Review of Educational Research, 69(2), 145-186.
Doolittle, P. E. & Camp, W. G. (1999). Constructivism: The career and technical education perspective. Journal of Vocational and Technical Education, 16(1), 23-46.
Dori, Y. J. & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students' understanding of electromagnetism concepts? Journal of the Learning Sciences, 14(2), 243-279.
Driver, R. & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5(1), 61-84.
Duschl, R. A. & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22(9), 2109-2139.
Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3-4), 391-450.
Eisenkraft, A. (2003). Expanding the 5E model. Science Teacher, 70(6), 56-59.
Erbas, C. & Demirer, V. (2019). The effects of augmented reality on students' academic achievement and motivation in a biology course. Journal of Computer Assisted Learning, 35(3), 450-458.
Fazelian, P. & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students. Procedia Social and Behavioral Sciences, 5, 140-143.
Fishman, B. J. & Duffy, T. M. (1992). Classroom restructuring: What do teachers really need? Educational Technology Research and Development, 40(3), 95-111.
Fosnot, C. T. & Perry, R. S. (1996). Constructivism: A psychological theory of learning. Constructivism: Theory, Perspectives, and Practice, 2(1), 8-33.
Gagné, R. M. (1970). The Conditions of Learning. Ballwin, MO: Holt, Rinehart & Winston.
Gardner, P. L. (1975). Attitudes to science: A review. Studies in Science Education, 2(1), 1-41.
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101(3), 371.
Gredler, M. E. (1996). Educational games and simulations: A technology in search of a (research) paradigm. Technology, 39, 521-540.
Greene, J. A., Moos, D. C., Azevedo, R., & Winters, F. I. (2008). Exploring differences between gifted and grade-level students’ use of self-regulatory learning processes with hypermedia. Computers & Education, 50(3), 1069-1083.
Harris, K. R. & Alexander, P. A. (1998). Integrated, constructivist education: Challenge and reality. Educational Psychology Review, 10(2), 115-127.
Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79(2), 171-212.
Hidi, S. (2000). An interest researcher's perspective: The effects of extrinsic and intrinsic factors on motivation. In Intrinsic and Extrinsic Motivation (pp. 309-339). Cambridge, MA: Academic Press.
Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
Hinze, W. J., Von Frese, R. R., Von Frese, R., & Saad, A. H. (2013). Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge, UK: Cambridge University Press.
Hofstein, A. & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science Education, 88(1), 28-54.
Hong, J. C., Tsai, C. R., Hsiao, H. S., Chen, P. H., Chu, K. C., Gu, J., & Sitthiworachart, J. (2019). The effect of the “Prediction-observation-quiz-explanation” inquiry-based e-learning model on flow experience in green energy learning. Computers & Education, 133, 127-138.
Ibáñez, M. B., Di Serio, A., Villarán, D., & Delgado-Kloos, C. (2016, July). The acceptance of learning augmented reality environments: A case study. In 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 307-311). Austin, TX: IEEE.
Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
Ivanova, G., Aliev, Y., & Ivanov, A. (2014). Augmented reality textbook for future blended education. In International Conference on e-Learning, 14, 130-136.
Jaakkola, T. & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271-283.
Jumaat, N. F. & Tasir, Z. (2014, April). Instructional scaffolding in online learning environment: A meta-analysis. In 2014 International Conference on Teaching and Learning in Computing and Engineering (pp. 74-77). Kuching, Malaysia: IEEE.
Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24(3), 852-861.
Karplus, R. & Their, H. D. (1967). A New Look at Elementary School Science: Science Curriculum Improvement Study. Chicago, IL: Rand Mcnally.
Kaufmann, G. (2003). Expanding the mood-creativity equation. Creativity Research Journal, 15(2-3), 131-135.
Kaynar, D., Tekkaya, C., & ÇAKIROĞLU, J. (2009). Effectiveness of 5e learning cycle instruction on students’ achievement in cell concept and scientific epistemological beliefs. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 37(37), 96-105.
Kiili, K. (2005). Content creation challenges and flow experience in educational games: The IT-Emperor case. The Internet and Higher Education, 8(3), 183-198.
Kim, M. C. & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417.
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163.
Kleinginna, P. R. & Kleinginna, A. M. (1981). A categorized list of motivation definitions, with a suggestion for a consensual definition. Motivation and Emotion, 5(3), 263-291.
Kramarski, B. & Hirsch, C. (2003) Using computer algebra systems in mathematical classrooms. Journal of Computer Assisted Learning, 19, 35-46.
Kriz, S. & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65(11), 911-930.
Lakoff, G. & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought (Vol. 640). New York, NY: Basic Books.
Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65-100.
Lauer, T. E. (2003). Conceptualizing ecology: a learning cycle approach. The American Biology Teacher, 65(7), 518-522.
Limón, M. & Mason, L. (Eds.). (2002). Reconsidering Conceptual Change: Issues in Theory and Practice (pp. 115-135). Dordrecht, Netherlands: Kluwer Academic Publishers.
Liu, Q., Yu, S., Chen, W., Wang, Q., & Xu, S. (2021). The effects of an augmented reality based magnetic experimental tool on students' knowledge improvement and cognitive load. Journal of Computer Assisted Learning, 37(3), 645-656.
Malone, T. & Lepper, M. (1987). Making learning fun: A taxonomy of intrinsic motivations of learning. In R. E. Snow& M. J. Farr (Eds.), Aptitude, Learning, and Instruction: Vol. 3. Conative and Affective Process Analyses (pp. 223-253). Hillsdale, NJ: Lawrence Erlbaum.
Matsutomo, S., Miyauchi, T., Noguchi, S., & Yamashita, H. (2012). Real-time visualization system of magnetic field utilizing augmented reality technology for education. IEEE Transactions on Magnetics, 48(2), 531-534.
Mayer, R. E. & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.
Mayer, R. E. (1984). Aids to text comprehension. Educational Psychologist, 19(1), 30-42.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1-19.
Mayer, R. E. (2001). Multimedia Learning. Cambridge, UK: Cambridge University Press.
Mayer, R. E. (2011). Multimedia learning and games. In S. Tobias & J. D. Fletcher (Eds.), Computer Games and Instruction (pp. 281-305). Charlotte, NC: Information Age Publishing.
McDermott, L. C. & Shaffer, P. S. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. American Journal of Physics, 60(11), 994-1003.
Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, 77(12), 1321-1329.
Mischkowski, R. A., Zinser, M. J., Kübler, A. C., Krug, B., Seifert, U., & Zöller, J. E. (2006). Application of an augmented reality tool for maxillary positioning in orthognathic surgery–a feasibility study. Journal of Cranio-Maxillofacial Surgery, 34(8), 478-483.
Mitsuhara, H., Shishibori, M., Kawai, J., & Iguchi, K. (2016, July). Game-based evacuation drills using simple augmented reality. In 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 133-137). IEEE.
Morrison, G. R., Ross, S. M., Steven, M., & Kemp, J. E. (2004). Designing Effective Instruction (4th ed.). Hoboken, NJ: John Wiley & Sons.
Mupira, P. & Ramnarain, U. (2018). The effect of inquiry‐based learning on the achievement goal‐orientation of grade 10 physical sciences learners at township schools in South Africa. Journal of Research in Science Teaching, 55(6), 810-825.
Najjar, L. J. (1996). Multimedia information and learning. Journal of Educational Multimedia and Hypermedia, 5(2), 129-150.
National Research Council [NRC]. (1996). National Science Education Standards. Washington, DC: National Academic.
Njoo, M. & De Jong, T. (1993). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support. Journal of Research in Science Teaching, 30(8), 821-844.
Özdemir, E. & Coramik, M. (2018). Reasons of student difficulties with right-hand rules in electromagnetism. Journal of Baltic Science Education, 17(2), 320.
Özeke, S. (2009). Connections between the constructivist-based models for teaching science and music. Procedia Social and Behavioral Sciences, 1(1), 1068-1072.
Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer simulations regardless of prior knowledge levels? Computers & Education, 52(3), 649-655.
Piaget, J. (1923). La pensée symbolique et le pensée de l'enfant. Archives de Psychologie, 18, 273–304.
Piaget, J. (1975). From noise to order: The psychological development of knowledge and phenocopy in biology. The Urban Review, 8(3), 209-218.
Piaget, J. (1976). Piaget’s theory. In Piaget and His School (pp. 11-23). Berlin, Germany: Springer.
Pintrich, P. R., Smith, D. A., & Mckeachie, W. J. (1989). A manual for the use of the motivated strategies for learning questionnaire (MSLQ).
Plass, J. L., Homer, B. D., Milne, C., Jordan, T., Kalyuga, S., Kim, M., & Lee, H. (2009). Design factors for effective science simulations: Representation of information. International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 1(1), 16-35.
Posner, G. J. & Strike, K. A. (1976). A categorization scheme for principles of sequencing content. Review of Educational Research, 46(4), 665-690.
Posner, G. J. (1974). The extensiveness of curriculum structure: A conceptual scheme. Review of Educational Research, 44(4), 401-407.
Preckel, F., Holling, H., & Vock, M. (2006). Academic underachievement: Relationship with cognitive motivation, achievement motivation, and conscientiousness. Psychology in the Schools, 43(3), 401-411.
Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital Game-Based Learning, 5(1), 5-31.
Pressley, M. & McCormick, C. (1995). Cognition, Teaching, and Assessment. New York, NY: HarperCollins College Publishers.
Puntambekar, S. & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1-12.
Rakkapao, S., Pengpan, T., Srikeaw, S., & Prasitpong, S. (2014). Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique. European Journal of Physics, 35(1), 015016.
Recht, D. R. & Leslie, L. (1988). Effect of prior knowledge on good and poor readers' memory of text. Journal of Educational Psychology, 80(1), 16.
Ryu, H. & Parsons, D. (Eds.). (2008). Innovative Mobile Learning: Techniques and Technologies: Techniques and Technologies. Hershey, PA: IGI Global.
Sahin, D. & Yilmaz, R. M. (2020). The effect of augmented reality technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710.
Salomon, G. & Leigh, T. (1984). Predispositions about learning from print and television. Journal of Communication, 34(2), 119–135.
Sansone, C. & Smith, J. L. (2000). Interest and self-regulation: The relation between having to and wanting to. In Intrinsic and Extrinsic Motivation (pp. 341-372). Cambridge, MA: Academic Press.
Schnotz, W. & Kürschner, C. (2008). External and internal representations in the acquisition and use of knowledge: visualization effects on mental model construction. Instructional Science, 36(3), 175-190.
Schunk, D. H., Pintrich, P. R„ & Meece, J. L. (2008). Motivation in Education: Theory, Research, and Applications (3rd ed.). Upper Saddle River, NJ: Pearson Education.
Schwab, J. J. (1958). The teaching of science as inquiry. Bulletin of the Atomic Scientists, 14(9), 374-379.
Shelton, B. E. & Hedley, N. R. (2002, September). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. In The First IEEE International Workshop Augmented Reality Toolkit, (pp. 8). Darmstadt, Germany: IEEE.
Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 40(1), 6-33.
Shipstone, D. M. (1984). A study of children's understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185-198.
Snir, J., Smith, C., & Grosslight, L. (1993). Conceptually enhanced simulations: A computer tool for science teaching. Journal of Science Education and Technology, 2(2), 373-388.
Sokan, A., Inagawa, N., Nishijo, K., Shinagawa, N., Egi, H., & Fujinami, K. (2010). Alerting accidents with ambiguity: A tangible tabletop application for safe and independent chemistry experiments. In Ubiquitous Intelligence and Computing, 151-166. Berlin, Germany: Springer.
Sparks, D. & Loucks-Horsley, S. (1989). Five models of staff development. Journal of Staff Development, 10(4), 40-57.
Steffe, L. P. & Gale, J. E. (Eds.). (1995). Constructivism in Education. Hove, UK: Psychology Press.
Suppes, P. (1966). Mathematical concept formation in children. American Psychologist, 21, 139-150.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.
Taba, H. (1962). Curriculum Development: Theory and Practice. New York: Harcourt, Brace & World.
Tabachnick, B. G. & Fidell, L. S. (2006). Using Multivariate Statistics. Boston, MA: Bearson.
Takeuchi, L. M. & Vaala, S. (2014). Level up learning: A national survey on teaching with digital games. In Joan Ganz Cooney Center at Sesame Workshop. Joan Ganz Cooney Center at Sesame Workshop. 1900 Broadway, New York, NY 10023.
Taub, M., Azevedo, R., Bouchet, F., & Khosravifar, B. (2014). Can the use of cognitive and metacognitive self-regulated learning strategies be predicted by learners’ levels of prior knowledge in hypermedia-learning environments? Computers in Human Behavior, 39, 356-367.
Trowbridge, L. W. & Bybee, R. W. (1990). Becoming a Secondary School Science Teacher (5th ed.). New York, NY: Merrill.
Tyler, R. W. (1950). Basic Principles of Curriculum and Instruction. Chicago, IL: University of Chicago Press.
Valente, M. O., Fonseca, J., & Conboy, J. (2011). Inquiry science teaching in Portugal and some other countries as measured by PISA 2006. Procedia Social and Behavioral Sciences, 12, 255-262.
Van Oostendorp, H., Beijersbergen, M. J., & Solaimani, S. (2008). Conditions for Learning from Animations. In Kanselaar, G., Jonker, V., Kirschner, P. A., & Prins, F. J. (Eds.), International Perspectives in the Learning Sciences: Cre8ing a learning world. Proceedings of the Eighth International Conference for the Learning Sciences – ICLS 2008, Volumes 2 (pp. 438-445). Utrecht, Netherlands: International Society of the Learning Sciences.
Waern, Y. (1990). On the dynamics of mental models. In D. Ackermannn & M. J. Tauber (Eds.), Mental Models and Human Computer Interaction 1 (Human Factors in Information Technology (pp. 73-93). Amsterdam, Netherlands: Elsevier.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. Handbook of Research on Science Teaching and Learning, 177, 210.
White, R. & Gunstone, R. (1992). Prediction-observation-explanation. In White, R. & Gunstone, R. (Eds.), Probing Understanding (pp.44-64). London, UK: Falmer Press.
Wilder, M. & Shuttleworth, P. (2004). Cell inquiry: A 5E learning cycle lesson. Science Activities, 41(1), 25-31.
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625-636.
Winters, F. I., Greene, J. A., & Costich, C. M. (2008). Self-regulation of learning within computer-based learning environments: A critical analysis. Educational Psychology Review, 20(4), 429-444.
Wiser, M. & Amin, T. G. (2002). Computer-based interactions for conceptual change in science. In Reconsidering Conceptual Change: Issues in Theory and Practice (pp. 357-387). Dordrecht, Netherlands: Springer.
Wittrock, M. C. (1974). Learning as a generative process. Educational Psychologist, 11(2), 87-95.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Wu, H. L. & Pedersen, S. (2011). Integrating computer-and teacher-based scaffolds in science inquiry. Computers & Education, 57(4), 2352-2363.
Yaman, F. & Ayas, A. (2015). Assessing changes in high school students' conceptual understanding through concept maps before and after the computer-based predict–observe–explain (CB-POE) tasks on acid–base chemistry at the secondary level. Chemistry Education Research and Practice, 16(4), 843-855.
Yang, T. C., Chen, M. C., & Chen, S. Y. (2018). The influences of self-regulated learning support and prior knowledge on improving learning performance. Computers & Education, 126, 37-52.
Yates, G. C. & Chandler, M. (1991). The cognitive psychology of knowledge: Basic research findings and educational implications. Australian Journal of Education, 35(2), 131-153.
Young, S. S. C. & Wang, Y. H. (2014). The game embedded CALL system to facilitate English vocabulary acquisition and pronunciation. Journal of Educational Technology & Society, 17(3), 239-251.
Zajkov, O., Gegovska-Zajkova, S., & Mitrevski, B. (2017). Textbook-caused misconceptions, inconsistencies, and experimental safety risks of a grade 8 physics textbook. International Journal of Science and Mathematics Education, 15(5), 837-852.
Zietsman, A. I. & Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23(1), 27-39.