簡易檢索 / 詳目顯示

研究生: 張慈修
Chang, Tzu-Hsiu
論文名稱: 再生三乙基胺及有機膦試劑:經良好的化學選擇性及分子內 Wittig 反應合成四取代呋喃化合物及利用苯炔與亞胺經由 π 鍵的嵌入反應合成苯并噁嗪化合物
Recyclable triethylamine and phosphine: Synthesis of highly functionalized furans via chemoselective reduction/Wittig reaction and Synthesis of 1,3-Benzoxazines via π-insertion reactions of Arynes and N-Acyl imines
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 300
中文關鍵詞: 三乙基胺有機膦試劑Wittig 反應四取代呋喃化合物苯炔亞胺
英文關鍵詞: triethylamine, phosphine, Wittig reaction, functionalized furans, Arynes, N-Acyl imines
DOI URL: https://doi.org/10.6345/NTNU202204374
論文種類: 學術論文
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用催化量的三乙基胺以及有機膦試劑進行分子內 Wittig 反應合成四取代呋喃化合物,在反應中我們使用三乙基氯矽烷作為啟動試劑,用來活化氧化膦,再利用苯基矽烷對氧化膦進行還原反應。在反應中我們發現三乙基氯矽烷做為反應中的啟動試劑,進而促進還原反應,且催化量的三乙基胺鹽可以藉由加熱再生成三乙基胺。因此我們在反應中建立雙循環系統,且在系統中的各個試劑皆有良好的化學選擇性。並可以使用多種取代基的起始物,如氰基、酯基及酮基等來進行反應,並得到不錯的產率。

    關鍵字 : 三乙基胺、有機膦試劑、Wittig 反應、四取代呋喃化合物。

    苯炔為高活性的反應中間體,因其多樣化的反應吸引許多化學家的注意,因此我們嘗試利用苯炔與高活性且缺電子性質的氮-烯基亞胺反應。出乎我們意料之外得到的產物為經由 π 鍵的嵌入反應形成苯并噁嗪化合物,我們也可以使用取代基的芳香炔化合物與氮-醯基亞胺進行反應,來探討其化學選擇性。

    關鍵字 : 苯炔、亞胺。

    An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine in the presence of silyl chloride, which served as the promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in the generation of phosphine, while the decomposition of conjugate acid of Et3N resulted in the regeneration of base, both of which mediated the formation of phosphorus ylide.

    Key word : trimethylamine, phosphine, Wittig reaction, functionalized furans.

    Because arynes are highly reactive species and can undergo a variety of transformations, their chemistry attract chemist a lot of attention. We have successfully utilized the eletron-deficient N-acyl imines to trap the in-situ generated intermediates, benzyne, to obtain the corresponding benzoxazine derivatives in moderate yield. These unprecedented reactions are assumed to be via an unexpected [2+2] cycloaddition of N-acyl imine and benzyne as the key step.

    Key word : Arynes, N-Acyl imines.

    第一章、再生三乙基胺及有機膦試劑:經良好的化學選擇性及分子內 Wittig 反應合成四取代呋喃化合物 8 1-1、前言 8 1-2、催化膦反應之文獻回顧 11 1-3、呋喃化合物的合成方法 19 1-4、用膦試劑合成多取代的呋喃化合物 20 1-5、研究動機 24 1-6、實驗結果與討論 26 1-6-1、反應最佳化條件篩選 26 1-6-2、利用不同官能基的醯氯與起始物反應之探討 32 1-6-3、探討氧化膦的還原反應 38 1-6-4、醯氯與起始物之還原反應及化學選擇性的探討 43 1-6-5、反應機制的探討 46 1-6-6、總結 48 1-6-7、未來展望 48 1-7、實驗部分 49 1-7-1、分析儀器及基本實驗操作 49 1-7-2、實驗步驟及光譜數據 51 1-7-3、參考文獻 92 第二章、利用苯炔與亞胺經由 π 鍵的嵌入反應合成苯并噁嗪化合物 95 2-1、介紹 95 2-2、苯炔進行嵌入反應的文獻介紹 96 2-2-1、苯炔與 C=O 進行反應 96 2-2-2、苯炔與 C=C 進行反應 98 2-2-3、苯炔與 C= S進行反應 99 2-2-4、苯炔與 C=N 及 C=C 進行反應 100 2-2-5、苯炔與 N=S 進行反應 101 2-3、利用亞胺起始物與苯炔進行反應 103 2-4、實驗結果與討論 113 2-4-1、最佳化條件篩選 113 2-4-2、探討不同官能基的亞胺起始物與苯炔進行反應 117 2-4-3、最佳化條件的篩選 (在手套箱中) 119 2-4-4、不同官能基的亞胺起始物進行探討 123 2-4-5、探討反應機制 126 2-4-6、總結 127 2-4-7、未來展望 128 2-5、實驗部分 130 2-5-1、分析儀器及基本實驗操作 130 2-5-2、實驗步驟及光譜數據 132 2-5-3、第二部分參考文獻 154 附錄一 156 附錄二 276

    1-7-3、第一部分參考文獻
    [1] For selected example and reviews, see: (a) U. Das, Y.-L. Tsai, W. Lin, Org. Biomol. Chem. 2014, 12, 4044; (b) P. A. Byrne, D. G. Gilheany, Chem. Soc. Rev. 2013, 42, 6670; (c) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863; (d) C.-J. Lee, C.-C. Tsai, S.-H. Hong, G.-H. Chang, M.-C. Yang, L. Möhlmann, W. Lin, Angew. Chem. Int. Ed. 2015, 54, 8502.
    [2] For selected reviews, see: (a) S. Fletcher, Org. Chem. Front. 2015, 2, 739; (b) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar, Chem. Rev. 2009, 109, 2551.
    [3] For selected works, see: (a) T. W. Baughman, J. C. Sworen, K. B. Wagener, Tetrahedron 2004, 60, 10943; (b) V. S. C. de Andrade, M. C. S. de Mattos, Curr. Org. Synth. 2015, 12, 309; (c) R. Appel, Angew. Chem Int. Ed. 1975, 14, 801.
    [4] For selected works, see: (a) Y.-Y. Yang, W.-G. Shou, Z.-B. Chen, D. Hong, Y.-G. Wang, J. Org. Chem. 2008, 73, 3928; (b) S. S. van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angew. Chem Int. Ed. 2011, 50, 8806; (c) Y. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin, Tetrahedron, 1981, 37, 437.
    [5] D. He’rault, D. H. Nguyen, D. Nuel, G. Buono, Chem. Soc. Rev. 2015, 44, 2508.
    [6] C. J. O'Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48, 6836.
    [7] R. M. Denton, X. Tang, A. Przeslak, Org. Lett. 2010, 12, 4678.
    [8] H. A. van Kalkeren, J. J. Bruins, F. P. J. T. Rutjes,F. L. van Delft, Adv. Synth. Catal. 2012, 354, 1417.
    [9] L. Wang, Y. Wang, M. Chen, M.-W. Dinga, Adv. Synth. Catal. 2014, 356, 1098.
    [10] K. Fourmy, A. Voituriez, Org. Lett. 2015, 17 , 1537.
    [11] J. A. Buonomo, C. C. Aldrich, Angew. Chem. Int. Ed. 2015, 54, 1.
    [12] C. J. O'Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J. Doonan, Chem. Eur. J. 2013, 19, 5854.
    [13] L. Melzig, B. Christian, Rauhut, P. Knochel, Chem. Commun. 2009, 3536.
    [14] G. Minetto, L. F. Raveglia, A. Sega, M. Taddei, Eur. J. Org. Chem. 2005, 5277.
    [15] G. Mross,E. Holtz, P. Langer, J. Org. Chem. 2006, 71, 8045.
    [16] A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195.
    [17] F. Yang, T. Jin, M. Bao, Y. Yamamoto, Chem. Commun. 2011, 47, 4541.
    [18] a) O. M. Demchuk, R. Jasi ´ nski, K. M. Pietrusiewicz, Heter. Chem. 2015, 26, 441. b) S. Syu, Y. T. Lee, Y. J. Jang, W. W. Lin, Org. Lett. 2011, 13, 2970. c) Y. S. Fan, U. Das, M. Y. Hsiao, M. H. Liu, W. W. Lin, J. Org. Chem. 2014, 79, 11567.
    [19] For selected examples involving the recycling of phosphine oxide, see: (a) C. J. O'Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48, 6836; (b) C. J. O'Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J. Doonan, Chem. Eur. J. 2013, 19, 5854; (c) W. Zhao, P. K. Yan, A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 616; (d) K. D. Reichl, N. L. Dunn, N. J. Fastuca, A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 5292; (e) Y.-L. Tsai, W. Lin, Asian J. Org. Chem. 2015, 4, 1040; (f) J. A. Buonomo, C. C. Aldrich, Angew. Chem. Int. Ed. 2015, 54, 13041; (g) C. J. O'Brien, Z. S. Nixon, A. J. Holohan, S. R. Kunkel, J. L. Tellez, B. J. Doonan, E. E. Coyle, F. Lavigne, L. J. Kang, K. C. Przeworski, Chem. Eur. J. 2013, 19, 15281; (h) M.-L. Schirmer, S. Adomeit, A. Spannenberg, T. Werner, Chem. Eur. J. 2016, 22, 2458; (i) A. D. Kosal, E. E. Wilson, B. L. Ashfeld, Angew. Chem. Int. Ed. 2012, 51, 12036.
    [20] For the selected works involving the use of byproduct as catalyst, see: (a) B.-L. Yang, Z.-T. Weng, S.-J. Yang, S.-K. Tian, Chem. Eur. J. 2010, 16, 718; (b) L. Chen, Y. Du, X.-P. Zeng, T.-D. Shi, F. Zhou, J. Zhou, Org. Lett. 2015, 17, 1557; (c) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang, L.-P. Cao, N.-F. She, A.-X. Wu, Org. Lett. 2010, 12, 4026; (d) T. Y. S. But, P. H. Toy, Chem. Asian J. 2007, 2, 1340.
    [21] T.-T. Kao, S.-e. Syu, Y.-W. Jhang, W. Lin, Org. Lett. 2010, 12, 3066.
    [22] O. M. Demchuk, R. Jasi ´ nski, K. M. Pietrusiewicz, Heter. Chem. 2015, 26, 441.
    b) S. Syu, Y. T. Lee, Y. J. Jang, W. W. Lin, Org. Lett. 2011, 13, 2970. c) Y. S. Fan, U. Das, M. Y. Hsiao, M. H. Liu, W. W. Lin, J. Org. Chem. 2014, 79, 11567.
    [23] For the selected works involving the use of byproduct as catalyst, see: a) B.-L. Yang, Z.-T. Weng, S.-J. Yang, S.-K. Tian, Chem. Eur. J. 2010, 16, 718; b) L. Chen, Y. Du, X.-P. Zeng, T.-D. Shi, F. Zhou, J. Zhou, Org. Lett. 2015, 17, 1557; c) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang, L.-P. Cao, N.-F. She, A.-X. Wu, Org. Lett. 2010, 12, 4026; d) T. Y. S. But, P. H. Toy, Chem. Asian J. 2007, 2, 1340.
    [24] a) C. A. Scott, D. G. Smith, D. J. H. Smith, Synth. Commun. 1976, 6, 135-139. For a review on the reduction of carbonyl compounds by hydrosilanes, see: b) D. Addis, S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6004.
    [25] Generation of activated silyloxyphosphonium salt species from phosphine oxide and TMSCl or TMSOTf have been reported earlier. Please see: (a) H. Tanaka, T. Yano, K. Kobayashi, S. Kamenoue, M. Kuroboshi, H. Kawakubo, Synlett 2011, 582; (b) H. Kawakubo, M. Kuroboshi, T. Yano, K. Kobayashi, S. Kamenoue, T. Akagi, H. Tanaka, Synthesis 2011, 4091.
    [26] Y. –T. Lee, Y. –J. Jang, S. Syu, S. –C. Chou, C. –J. Lee, W. W. Lin, Chem. Commun. 2012, 48, 8135.
    [27] The formation of Intermediate 86 can be observed by NMR spectorscopic analysis. Please also see reference 25.
    [28] A plausible reaction mechanism for reduction of 16 is proposed. In addition, the possible intermediates in this reduction reaction were monitored in the control experiments by 31P NMR spectorscopic analysis. For the detailed information, please see the supporting information.
    2-5-3、第二部分參考文獻
    [1] P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550.
    [2] A. Bhunia, S. R. Yetra and A. T. Biju, Chem. Soc. Rev., 2012, 41, 3140.
    [3] H. Yoshida, M.Watanabe,H. Fukushima, J. Ohshita,A. Kunai, Org. Lett. 2004, 6, 4049.
    [4] E. Yoshioka, S. Kohtani, H. Miyabe, Org. Lett. 2010, 12, 1956.
    [5] U. K.Tambar, B. M. Stoltz, J. AM. CHEM. SOC. 2005, 127, 5340.
    [6] K. Biswas, M. F. Greaney, Org. Lett. 2011, 13, 4946.
    [7] R. Li, H. Tang, H. Fu, H. Ren, X. Wang, C. Wu, C. Wu, F. Shi, J. Org. Chem. 2014, 79, 1344.
    [8] S. Yoshida, T. Yano, Y. Misawa, Y. Sugimura, K. Igawa, S. Shimizu, K. Tomooka, T. Hosoya, J. Am. Chem. Soc. 2015, 137, 14071.
    [9] A. A. Aly, N. K. Mohamed, A. A. Hassan, A. -F. E. Mourad, Tetrahedron. 1999, 55, 1111.
    [10] V. Nair, K. H. Kim, J. Org. Chem. 1975, 40, 3784.
    [11] A. Kunai, H. Yoshida, H. Fukushima, J. Ohshita, J. Am. Chem. Soc. 2006, 128, 11040.
    [12] W.-G. Shou, Y.-Y. Yang, Y.-G. Wang, J. Org. Chem. 2006, 71, 9241.
    [13] W. Ye, L. Zhang, C. Ni, J. Rong, J Hu, Chem. Commun. 2014, 50, 10596.
    [14]
    http://amogsobgy.com/downloads/AkumentisChechwt/CurrOpinInvestigDrugs.pdf.
    [15] K. Wojciechowski, Eur. J. Org. Chem. 2001, 3587.
    [16] (a) B. J. Cowen, L. B. Saunders, S. J. Miller, J. Am. Chem. Soc. 2009, 131, 6105. (b) T. Mecozzi, M. Petrini, J. Org. Chem. 1999, 64, 8970; (c) J. Sisko, M. Mellinger, P. W. Sheldrake, N. H. Baine, Tetrahedron Lett. 1996, 37, 8113; (d) B. Unterhalt, R. Mohr, Synthesis 1985, 1985, 973; (e) J. A. Murry, D. E. Frantz, A. Soheili, R. Tillyer, E. J. J. Grabowski, P. J. Reider, J. Am. Chem. Soc. 2001, 123, 9696; (f) S. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007, 129, 15398.
    [17] H. Zhao, X. Menga, Y. Huang, Chem. Commun. 2013, 49, 10513.
    [18] D. Best, S. Kujawa, H. W. Lam, J. Am. Chem. Soc. 2012, 134, 18193.
    [19] T. Kaicharla, M. Thangaraj, A. T. Biju, Org. Lett. 2014, 16, 1728.

    無法下載圖示 本全文未授權公開
    QR CODE