簡易檢索 / 詳目顯示

研究生: 林星榮
LIN, Xing Rong
論文名稱: 乙醇電氧化在過渡金屬上反應研究
The investgation of ethanol electrooxidation reaction on transition-metal catalysts
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 139
中文關鍵詞: 電氧化過渡金屬乙醇一氧化碳脫除
英文關鍵詞: electrooxidation, transition-metal, ethanol, CO stripping
論文種類: 學術論文
相關次數: 點閱:157下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,利用一系列的金屬催化劑,包括Rh、Ir、Pd、Pt、Au、Ru、Cu、Co、Ni、Ag等十種金屬,在酸性和鹼性條件下對乙醇電氧化反應做有系統的研究。
    利用含浸還原法製備金屬催化劑,並加入NaBH4當作還原劑,使金屬還原並吸附在Vulcan XC-72上。合成出來的樣品粉末會先經由XRD、SEM、EDX和TEM的測試,藉此來確認它們的結構、組成、和顆粒大小,接著在把合成出來的金屬觸媒吸附到玻璃碳電極上做電化學的測試。利用循環伏安法做電化學的測試,藉由掃描出來的圖譜,可以得到氫氣吸脫附和CO脫除的訊號,經由計算可以得到金屬催化劑的表面活性面積。金屬催化劑對乙醇電氧化反應活性的研究,則利用循環伏安法和計時安培法,在包含1M乙醇的酸性(0.5M H2SO4)和鹼性(0.1M KOH)溶液當中,測試電氧化活性和抗毒化的能力。
    綜合電化學的結果可以得到幾個結論:(1) 一般認為Pt在酸性條件下,而Pd在鹼性條件下時,對於乙醇電氧化能力是較好的金屬催化劑;Au 則具有不錯的抗毒化能力。(2) 當金屬催化劑的顆粒大小越小時,乙醇電氧化的效能會越好;而提高金屬的比例不一定就會提升乙醇電氧化的效能。(3) 乙醇電氧化的起始氧化電位越低,氧化峰的電位也會越低,氧化峰的電流強度會越高。

    關鍵字:電氧化、過渡金屬、乙醇、一氧化碳脫除

    In this study, electrooxidation of ethanol on a series of metal-based catalysts, including, Rh, Ir, Pd, Pt, Au, Ru, Cu, Co, Ni and Ag, have been systematically investigated in both acidic and alkaline media.
    The electrocatalyst were prepared by the impregnation reduction method, as metals were reduced by NaBH4 and deposited on Vulcan XC-72.The fabricated sample powder were initially examined by XRD, SEM, EDX and TEM to confirm their microstructure, chemical composition and particle size and deposited on glassy carbon electrode for the electrochemical measurement. The electrochemical measurement by cyclic voltammogtams (CVs) for hydrogen adsorption/desorption and CO stripping, were used to calculate the metal active surface of the working electrode. The promoting activity of catalysts for ethanol electrooxidation reaction was examined by CV and chronoamperometry (CA) measurements for 1M ethanol in boths acidic (0.5M H2SO4) and alkaline (0.1M KOH) conditions to investigate the electrooxidation active and antipoisoning stability of the catalysts, respectively.
    The electrochemical results can be obtained in several conclusions:(1) Pt and Pd sre considered as the best catalysts for ethanol electrooxidation acidic and alkaline media, repectively; while Au shows excellent antipoisoning behavior. (2) The smetallic catalysts with smaller particle sizes can provide better electro-catalystic performance: while their loadings play insignificant role. (3)The lower onset potential for ethanol oxidation will reduce and increase the oxidationpeak potential and its current intensity, respectively.

    keywords: electrooxidation、transition-metal、ethanol、CO stripping

    摘要 II Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章理論基礎與文獻回顧 1 1-0緒論 1 1-1燃料電池 2 1-1-1燃料電池的發展 2 1-1-2 燃料電池種類 3 1-2 直接乙醇燃料電池(Direct Ethanol Fuel Cell,DEFC ) 6 1-2-1 直接乙醇燃料電池的工作原理 6 1-2-2 直接乙醇燃料電池陽極反應機構 9 1-2-3 陽極催化劑討論 13 1-3 研究動機與目的 20 第二章 實驗設備與方法 22 2-1 實驗藥品與器材 22 2-1-1 金屬前驅物藥品 22 2-1-2 實驗用其餘藥品 23 2-1-3 實驗用氣體 23 2-1-4 實驗器材 24 2-2 儀器介紹 25 2-2-1 粉末X光繞射儀(Powder X-Ray Diffractometer;XRD) 25 2-2-2掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 26 2-2-3能量散射光譜儀(Energy Dispersive Spectrometer;EDS) 26 2-2-4穿透式電子顯微鏡(Transmission electron microscopy;TEM) 27 2-2-5電化學循環伏安法( Cyclic Voltammetry :CV) 28 2-3 觸媒製備方法 33 2-3-1 含浸法觸媒製造 33 2-3-2 奈米觸媒製造 35 2-4 材料鑑定與分析 38 2-4-1 材料鑑定 38 2-4-1-1 XRD分析 38 2-4-1-2 SEM與EDX分析 39 2-4-1-3 TEM分析 40 2-4-2電化學特性測試 41 2-4-2-1 電極製備 42 2-4-2-2 循環伏安 43 2-4-2-3 乙醇氧化-計時安培法 44 第三章 結果與討論 45 3-1 金屬觸媒材料之鑑定 45 3-1-1 XRD分析 45 3-1-2 TEM分析 48 3.1.3 SEM與EDS分析 58 3-2 電化學特性測量結果 70 3-2-1循環伏安法分析 70 3-2-2 電催化乙醇氧化循環伏安法 95 3-2-3 乙醇氧化之計時安培法 120 第四章 結論 131 第五章 未來展望 133 文獻 134

    1. Carrette, L., Friedrich, K.A, and Stimming, U., Fuel Cell-Fundamentals and Application. Fuel Cell, 2001. 1: p. 5-39.
    2. P., H.M., Catalysis for low temperature fuel cells. Part III: Challenges for the direct methanol fuel cell. Platinum Metals Review, 2002. 46((4)): p. 146.
    3. Lamy, C., et al., Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 2002. 105(2): p. 283-296.
    4. Hitmi, H., et al., A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochimica Acta, 1994. 39(3): p. 407-415.
    5. Iwasita, T. and E. Pastor, A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochimica Acta, 1994. 39(4): p. 531-537.
    6. Chang, S.C., L.W.H. Leung, and M.J. Weaver, Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. The Journal of Physical Chemistry, 1990. 94(15): p. 6013-6021.
    7. Perez, J.M., et al., ?㈨n situ??infrared reflectance spectroscopic study of the early stages of ethanol adsorption at a platinum electrode in acid medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989. 262(1??): p. 251-261.
    8. Wang J., W.S., Savinell R.F.,, Evaluation of Ethanol,1-propanol,2-propanolin a Direct Oxidation Polymer-Electrolyte Fuel Cell.A Real-time Mass spectrometry Study. J.Electroanal. Soc., 1995. 142: p. 4218-4224.
    9. Camara, G.A. and T. Iwasita, Parallel pathways of ethanol oxidation: The effect of ethanol concentration. Journal of Electroanalytical Chemistry, 2005. 578(2): p. 315-321.
    10. Lai, S.C.S., et al., Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today. 154(1??): p. 92-104.
    11. Schmidt, V.M., et al., Electrochemical Reactivity of Ethanol on Porous Pt and PtRu:??Oxidation/Reduction Reactions in 1 M HClO4. The Journal of Physical Chemistry, 1996. 100(45): p. 17901-17908.
    12. Fujiwara, N., K.A. Friedrich, and U. Stimming, Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. Journal of Electroanalytical Chemistry, 1999. 472(2): p. 120-125.
    13. Xu, C., et al., Enhanced activity for ethanol electrooxidation on Pt?遷gO/C catalysts. Electrochemistry Communications, 2005. 7(12): p. 1305-1308.
    14. Song, H., et al., Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochemistry Communications, 2007. 9(6): p. 1416-1421.
    15. Song H, Q., Li X, Li F, Zhu W, Xhen L,, TiO2 Notubes Promoting Pt/C catalysts for Ethanol Electro-oxidation in Acidic Media. Power Sources, 2007. 170: p. 50-54.
    16. Neto, A.O., et al., Enhanced electro-oxidation of ethanol using PtSn/CeO2?静 electrocatalyst prepared by an alcohol-reduction process. Electrochemistry Communications, 2008. 10(9): p. 1315-1317.
    17. de Souza, J.P.I., et al., Electro-Oxidation of Ethanol on Pt, Rh, and PtRh Electrodes. A Study Using DEMS and in-Situ FTIR Techniques. The Journal of Physical Chemistry B, 2002. 106(38): p. 9825-9830.
    18. Gattrell, M., N. Gupta, and A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19.
    19. Oliveria Neto A, G.M., Perez J, Ticianelli EA, Gonzalez ER., The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Elecreochemistry Society, 2002. 149(3): p. A272-9.
    20. Xu, C., P.k. Shen, and Y. Liu, Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. Journal of Power Sources, 2007. 164(2): p. 527-531.
    21. Vigier, F., et al., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. Journal of Electroanalytical Chemistry, 2004. 563(1): p. 81-89.
    22. Zhang D, M.Z., Wang G, Konstantinov K, Yuan X, Liu A., electro-oxidation of Ethanol on Pt-WO3/C Electrocatalyst. Electrochemical and Solid State Letters, 2006. 9: p. A423-426.
    23. Delime, F., J.M. L矇ger, and C. Lamy, Enhancement of the electrooxidation of ethanol on a Pt?禅EM electrode modified by tin. Part I: Half cell study. Journal of Applied Electrochemistry, 1999. 29(11): p. 1249-1254.
    24. Vigier, F., et al., Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 2004. 34(4): p. 439-446.
    25. Zhou, W.J., et al., Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. Journal of Power Sources, 2004. 131(1??): p. 217-223.
    26. Li, H., et al., Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochimica Acta, 2007. 52(24): p. 6622-6629.
    27. Ma, L., D. Chu, and R. Chen, Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. International Journal of Hydrogen Energy. 37(15): p. 11185-11194.
    28. 方翔, 沈., 乙醇在钯电极上的电氧化机理. Acta Phys. Chim. Sin, 2009. 25(9): p. 1933-1938.
    29. Liu, J.Y., J. ; Xu, C. ;Jiang,S.P.;Tong,Y.,
    Electrochem.commun., 2007. 9: p. 2334.
    30. Tremiliosi-Filho, G., et al., Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. Journal of Electroanalytical Chemistry, 1998. 444(1): p. 31-39.
    31. Shen, S.Y., T.S. Zhao, and J.B. Xu, Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. International Journal of Hydrogen Energy. 35(23): p. 12911-12917.
    32. Cao, L., et al., Carbon-supported IrSn catalysts for a direct ethanol fuel cell. Electrochemistry Communications, 2007. 9(10): p. 2541-2546.
    33. Hameed, R.M.A. and K.M. El-Khatib, Ni?禅 and Ni?静u?禅 modified carbon catalysts for methanol electro-oxidation in KOH solution. International Journal of Hydrogen Energy. 35(6): p. 2517-2529.
    34. Jafarian, M., et al., Electro-oxidation of alcohols on nickel dispersed in poly-o-aminophenol modified graphite electrode. Journal of Electroanalytical Chemistry. 652(1??): p. 8-12.
    35. Abdel Rahim, M.A., R.M. Abdel Hameed, and M.W. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of Power Sources, 2004. 134(2): p. 160-169.
    36. Heli, H., et al., Electro-oxidation of methanol on copper in alkaline solution. Electrochimica Acta, 2004. 49(27): p. 4999-5006.
    37. Du, H., et al., Structure and electrochemical properties of ball-milled Co-carbon nanotube composites as negative electrode material of alkaline rechargeable batteries. Journal of Power Sources. 196(13): p. 5751-5755.
    38. 彭文權, 以沉積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 元智大學, 1997.
    39. Tran, T.D. and S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 1993. 65(13): p. 1805-1807.
    40. Markovi, N.M., et al., Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions. The Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
    41. Pozio, A., et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19.
    42. 陈滢, 唐., 高颖,刘长鹏,邢巍,陆天虹, 用改进液相还原法制备炭载 Pd 催化剂. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2009. 26(8): p. 985-988.
    .
    43. Lee, Y.W., et al., Synthesis and Electrocatalytic Activity of Au?殴d Alloy Nanodendrites for Ethanol Oxidation. The Journal of Physical Chemistry C. 114(17): p. 7689-7693.
    44. Guo, J., et al., Improving Oxygen Reduction Reaction Activities on Carbon-Supported Ag Nanoparticles in Alkaline Solutions. The Journal of Physical Chemistry C. 114(10): p. 4324-4330.
    45. E.R. Savinova, P.K., B. Pettinger, K. Doblhofer,, J. Electroanal.Chem., 1997. 430: p. 47.
    46. Nguyen, S.T., et al., Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B: Environmental, 2009. 91(1??): p. 507-515.
    47. Conway, B.E. and G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ?龝olcano curve??for cathodic H2 evolution kinetics. Electrochimica Acta, 2000. 45(25??6): p. 4075-4083.
    48. Lin, Y.-C., et al., The Journal of Physical Chemistry C, 2009. 113: p. 9197-9205.
    49. Fereydoon Gobal , R.A., Electrodeposited Rh and Rh–Cu Alloys as Ethanol-Tolerant
    Electrocatalysts for Oxygen Reduction in Alkaline Media. Electrocatal, 2011. 2: p. 42-51.
    50. M. Lukaszewski, H.S., A. Czerwinski,, Electrochim Acta, 2007. 52: p. 4560.
    51. Peuckert, M., Surf Sci, 1984. 141: p. 500.
    52. G. Jerkiewicz, J.J.B., Langmuir, 1993. 9: p. 2202.
    53. Reier, T., M. Oezaslan, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis. 2(8): p. 1765-1772.
    54. Juodkazytė, J., et al., EQCM Study of Ru and RuO2 Surface Electrochemistry. Electroanalysis, 2007. 19(10): p. 1093-1099.
    55. Zhou, W., et al., Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003. 46(2): p. 273-285.
    56. F. Vigier, C.C., F. Hahn, E.M. Belgsir, C. Lamy, On the mechanism of ethanol electro-oxidation on Pt and
    PtSn catalysts: electrochemical and in situ IR reflectance
    spectroscopy studies. Journal of Electroanalytical Chemistry, 2004. 563: p. 81–89.
    57. Dimos, M.M. and G.J. Blanchard, Evaluating the Role of Pt and Pd Catalyst Morphology on Electrocatalytic Methanol and Ethanol Oxidation. The Journal of Physical Chemistry C. 114(13): p. 6019-6026.
    58. Berchmans, S., H. Gomathi, and G.P. Rao, Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 1995. 394(1??): p. 267-270.
    59. Liang, Z.X., et al., Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta, 2009. 54(8): p. 2203-2208.
    60. Li, M., et al., The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochimica Acta, (0).
    61. Meng Li, D.A.C., ‡ Kotaro Sasaki,† Nebojsa S. Marinkovic,§ Karren More,‡ and and Radoslav R. Adzic*, Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide:
    Making Ir Capable of Splitting C-C Bond. J. Am. Chem. Soc, 2013. 135: p. 132-141.
    62. Hubert A. Gasteiger, N.M.M., and Philip N. Ross, Jr., Hz and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk
    Electrode Studies of the Pure Gases Including Temperature Effects. J. Phys. Chem., 1995. 99: p. 8290-8301.
    63. Vel獺zquez-Palenzuela, A., et al., Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition. Journal of Power Sources. 225(0): p. 163-171.
    64. Datta, J., A. Dutta, and S. Mukherjee, The Beneficial Role of the Cometals Pd and Au in the Carbon-Supported PtPdAu Catalyst Toward Promoting Ethanol Oxidation Kinetics in Alkaline Fuel Cells: Temperature Effect and Reaction Mechanism. The Journal of Physical Chemistry C. 115(31): p. 15324-15334.
    65. Guo, J.W., et al., Development of PtRu-CeO2/C anode electrocatalyst for direct methanol fuel cells. Journal of Power Sources, 2006. 156(2): p. 345-354.
    66. Du, W., et al., Highly Active Iridium/Iridium?荘in/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society. 133(38): p. 15172-15183.
    67. Walker, R.C., M. Bailes, and L.M. Peter, A study of the anodic behaviour of ruthenium by potential modulated reflectance spectroscopy. Electrochimica Acta, 1998. 44(8??): p. 1289-1294.
    68. Su, H., B. Zhang, and L. Chen, Preparation and Characterization of Platinum Supported on Carbon Nanotubes with Different Tube Diameter for Cathode Catalystsof Proton Exchange Membrane Fuel Cells. Journal of Materials Science & Technology. 26(6): p. 529-534.
    69. Wang, M.-x., et al., Investigation of carbon corrosion in polymer electrolyte fuel cells using steam etching. Materials Chemistry and Physics. 123: p. 761-766.
    70. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88: p. 1-24.

    下載圖示
    QR CODE