簡易檢索 / 詳目顯示

研究生: 葉家佑
Yeh, Chia-Yu
論文名稱: 具鉬鎢硫化物異質結構之高效光電化學產氫反應研究
Highly Efficient Photoelectrochemical Hydrogen Generation Reaction Using Heterostructure of Molybdenum Tungsten Sulfide
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 光催化水分解二硫化鎢二硫化鉬產氫反應
英文關鍵詞: Molybdenum Tungsten Sulfide, Hydrogen Evolution Reaction.
DOI URL: http://doi.org/10.6345/NTNU201900419
論文種類: 學術論文
相關次數: 點閱:211下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因能源需求與環境污染議題與日俱增,世界各國皆積極開發低汙染之替代能源,眾多綠色能源中,藉太陽能進行光催化水分解為一取代化石燃料之展望,且光催化水分解亦可達零碳排放與零污染之特點。當前研究結果,白金與其他貴金屬表現出良好之光電流特性,然其價格十分昂貴,且地表富含量低,不利於大範圍商業化,故開發地表豐富之非貴金屬水分解催化劑為此替代能源應用之一大課題。本研究利乃用矽作為光催化水分解之基板,藉由矽半導體特性照光產生電子電洞對與合適之能帶位置,故選其為本研究之光陰極。
      本研究更藉黃光微影製程技術與乾式蝕刻技術對矽表面進行改質,使其表面形成微米柱形貌,因表面粗糙度增加,可使光吸收率更進一步提升。本研究藉滴落塗布法(drop-casting)將共催化劑修飾於矽微米柱,改善矽基板光生載子動能不足之問題,降低電子電洞再結合率,並提升產氫效能。再藉由熱退火技術,成功將二硫化鎢(WS2)、二硫化鉬(MoS2)與兩者復合之異質結構(MoS2-WS2)修飾於矽微米柱。光電流量測則於模擬太陽光照射(100 mW/cm2)下,並藉標準氫電極電勢(reversible hydrogen electrode;RHE)為0 V下量測其光反應,其結果顯示於滴定量30 μL時MoS2-WS2於0 V vs. RHE下光電流高達25.92 mA/cm2,相較於WS2與MoS2 (8.18 mA/cm2、11.64 mA/cm2)具更好之效能表現。起始電壓亦達0.14 V vs RHE at 1 mA/cm2,且穩定性表現於酸性電解液中亦明顯優於未修飾之矽微米柱,並於反應10小時後依然維持67.7%之電性效率。

    Due to the increasing demand for energy and environmental pollution, countries around the world are actively developing alternative energy sources with low pollution. Among many green energy sources, the use of solar energy for photocatalytic water splitting is a prospect of replacing fossil fuels, and photocatalytic water splitting can also be achieved no carbon emissions and no pollution. According to the current research results, platinum and other precious metals exhibit good photocurrent characteristics, but their cost high and rareness on earth. Therefore, the development of abundant non-precious metal catalysts is one of the major difficulties in replacing fossil fuels with this method.
      In this study, silicon microwires (Si MWs) were fabricated by an inductively coupled plasma etching technique as the light absorber of solar hydrogen evolution. The three-dimensional structures of MWs enhanced the surface area and light harvesting ability to improve photoconversion efficiency. Molybdenum tungsten sulfide (MoxW1-xS2) was used as an Earth-abundant co-catalyst to decorated on Si MWs via drop-casting and thermal combustion methods for accelerating the sluggish kinetics of carriers on Si MWs. Various amount of Mo and W precursors were applied to synthesize of MoxW1-xS2 materials for optimizing the hydrogen adsorption energy. The optimal photocatalytic performance was achieved by MoWS2/Si photocathode with current density at 0 V (vs RHE) of -25.92 mA/cm2 and onset potential of 0.14 V (vs RHE).

    致謝 I 摘要 II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 太陽能光催化水分解 4 1.3 文獻回顧 20 1.4 研究目標 26 第二章 實驗步驟與儀器分析原理 28 2.1 化學藥品 29 2.2 光陰極基板配製 30 2.3 光陰極製作 39 2.4 電化學分析儀 42 2.5 材料分析儀器介紹 50 第三章 結果與討論 58 3.1 MoS2-WS2@Si MWs光陰極 58 第四章 結論 77 參考文獻 78

    參考文獻
    1. Yoshida, T.; Yamagata, Y.; Murakami, D., Energy Demand Estimation Using Quasi-real-time People Activity Data. Energy Procedia 2019, 158, 4172-4177.
    2. Ma, L.; Shima, M.; Yoda, Y.; Yamamoto, H.; Nakai, S.; Tamura, K.; Nitta, H.; Watanabe, H.; Nishimuta, T., Effects of Airborne Particulate Matter on Respiratory Morbidity in Asthmatic Children. Journal of epidemiology 2008, 18, 97-110.
    3. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38.
    4. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473.
    5. Kudo, A.; Miseki, Y., Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253-278.
    6. Matsuzaki, K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H., Epitaxial Growth of High Mobility Cu2O Thin Films and Application to p-channel Thin Film Transistor. Appl. Phys. Lett. 2008, 93, 202107.
    7. Liu, C.; Dasgupta, N. P.; Yang, P., Semiconductor Nanowires for Artificial Photosynthesis. Chem. Mater. 2013, 26, 415-422.
    8. Dahal, R.; Pantha, B.; Li, J.; Lin, J.; Jiang, H., In GaN/GaN Multiple Quantum Well Solar Cells with Long Operating Wavelengths. Appl. Phys. Lett. 2009, 94, 063505.
    9. Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L., N, P‐codoped Carbon Networks as Efficient Metal‐free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angew. Chem. Int. Ed. 2016, 55, 2230-2234.
    10. Chen, F.; Zhu, Q.; Wang, Y.; Cui, W.; Su, X.; Li, Y., Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films. ACS applied materials & interfaces 2016, 8, 31025-31031.
    11. Dai, P.; Xie, J.; Mayer, M. T.; Yang, X.; Zhan, J.; Wang, D., Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition. Angew. Chem. Int. Ed. 2013, 52, 11119-11123.
    12. Xie, J.; Yang, X.; Han, B.; Shao-Horn, Y.; Wang, D., Site-selective Deposition of Twinned Platinum Nanoparticles on TiSi2 Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities. Acs Nano 2013, 7, 6337-6345.
    13. McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B., Evaluation of Pt, Ni, and Ni–Mo Electrocatalysts for Hydrogen Evolution on Crystalline Si Electrodes. Energy & Environmental Science 2011, 4, 3573-3583.
    14. Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S., Hydrogen-evolution Characteristics of Ni–Mo-coated, Radial Junction, n+p-silicon Microwire Array Photocathodes. Energy & Environmental Science 2012, 5, 9653-9661.
    15. Xu, Y.; Schoonen, M. A., The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543-556.
    16. Imamura, K.; Akai, T.; Kobayashi, H., High Aspect Ratio Si Micro-holes Formed by Wet Etching Using Pt Needles. Materials Research Express 2015, 2, 075901.
    17. Ding, Q.; Meng, F.; English, C. R.; Cabán-Acevedo, M.; Shearer, M. J.; Liang, D.; Daniel, A. S.; Hamers, R. J.; Jin, S., Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS2. J. Am. Chem. Soc. 2014, 136, 8504-8507.
    18. Chen, C. J.; Yang, K. C.; Basu, M.; Lu, T. H.; Lu, Y. R.; Dong, C. L.; Hu, S. F.; Liu, R. S., Wide Range pH-tolerable Silicon@ Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution. ACS applied materials & interfaces 2016, 8, 5400-5407.
    19. Kempler, P. A.; Gonzalez, M. A.; Papadantonakis, K. M.; Lewis, N. S., Hydrogen Evolution with Minimal Parasitic Light Absorption by Dense Co–P Catalyst Films on Structured p-Si Photocathodes. ACS Energy Letters 2018, 3, 612-617.
    20. Veeramani, V.; Yu, H. C.; Hu, S. F.; Liu, R. S., Highly Efficient Photoelectrochemical Hydrogen Generation Reaction Using Tungsten Phosphosulfide Nanosheets. ACS applied materials & interfaces 2018, 10, 17280-17286.
    21. Qiu, T.; Wu, X.; Siu, G.; Chu, P. K., Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites. J. Electron. Mater. 2006, 35, 1879-1884.
    22. Zhang, L.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P., MoS2-wrapped Silicon Nanowires for Photoelectrochemical Water Reduction. Nano Research 2015, 8, 281-287.
    23. Chen, C. J.; Yang, K. C.; Liu, C. W.; Lu, Y. R.; Dong, C. L.; Wei, D. H.; Hu, S. F.; Liu, R. S., Silicon Microwire Arrays Decorated with Amorphous Heterometal-doped Molybdenum Sulfide for Water Photoelectrolysis. Nano Energy 2017, 32, 422-432.
    24. Li, R.; Yang, L.; Xiong, T.; Wu, Y.; Cao, L.; Yuan, D.; Zhou, W., Nitrogen Doped MoS2 Nanosheets Synthesized via a Low-temperature Process as Electrocatalysts with Enhanced Activity for Hydrogen Evolution Reaction. J. Power Sources 2017, 356, 133-139.
    25. Vikraman, D.; Hussain, S.; Akbar, K.; Truong, L.; Kathalingam, A.; Chun, S.-H.; Jung, J.; Park, H. J.; Kim, H.-S., Improved Hydrogen Evolution Reaction Performance Using MoS2–WS2 Heterostructures by Physicochemical Process. ACS Sustainable Chemistry & Engineering 2018, 6, 8400-8409.
    26. Tahira, A.; Ibupoto, Z. H.; Mazzaro, R.; You, S.; Morandi, V.; Natile, M. M.; Vagin, M.; Vomiero, A., Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core Shell MoS2/TiO2 Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials 2019.
    27. Morales-Guio, C. G.; Stern, L.-A.; Hu, X., Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
    28. West, A. R., Basic Solid State Chemistry. John Wiley & Sons Inc: 1999.
    29. Tuinstra, F.; Koenig, J. L., Raman Spectrum of Graphite. The Journal of Chemical Physics 1970, 53, 1126-1130.
    30. Liang, L.; Meunier, V., First-principles Raman Spectra of MoS2, WS2 and Their Heterostructures. Nanoscale 2014, 6, 5394-5401.
    31. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D., From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
    32. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano 2010, 4, 2695-2700.
    33. Zhao, H.; Dai, Z.; Xu, X.; Pan, J.; Hu, J., Integrating Semiconducting Catalyst of ReS2 Nanosheets into P-Silicon Photocathode for Enhanced Solar Water Reduction. ACS applied materials & interfaces 2018, 10, 23074-23080.
    34. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S., High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.

    下載圖示
    QR CODE