簡易檢索 / 詳目顯示

研究生: 葉丞豪
Yeh, Chen-Hao
論文名稱: 以理論計算探討在各種奈米團簇(純金屬或金屬氧化物)上之化學反應: I. 氮氣分子在釕金屬奈米團簇(Ru19與Ru79)上的斷鍵反應 II. 一氧化碳分子在Ni4(OH)3/hGO材料上的氧化反應 III. 乙醛及乙醇分子在氧化鋅奈米團簇[(ZnO)12]上的轉換反應
Theoertical Studies of Chemical Reactions on Various Nano Clusters (including pure metal and metal oxide clusters): I. Bond Scission of N2 Molecule on Ruthenium Nano Clusters (Ru19 and Ru79) II. CO Oxidation Reaction on Ni4(OH)3/hGO Material III. Conversion Reactions of Ethanol and Acetaldehyde on (ZnO)12 Cluster
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 158
中文關鍵詞: DFT計算N2斷鍵CO氧化反應C-C結合反應奈米團簇
英文關鍵詞: DFT Calculation, N2 Bond Cleavage, CO Oxidation Reaction, C-C Coupling Reaction, Nano Cluster
DOI URL: https://doi.org/10.6345/NTNU202205137
論文種類: 學術論文
相關次數: 點閱:197下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由各式奈米團簇催化不同化學反應,是近年來的重要研究議題之一。其中N2分子的斷鍵是氨氣合成中的速率決定步驟並且釕金屬是常用於這個反應的催化劑。其中雙二十面體結構(double-icosahedral, DI-Ru19)的Ru19奈米團簇以及雙截角八面體形(twinned truncated octahedral, t-TO-Ru79)的Ru79奈米團簇結構,均具備高活性的”類山谷”區域能夠用來催化N2的吸附和斷鍵。我們的計算結果顯示N2在DI-Ru19團簇上的活性類山谷區域的斷鍵活化能最小為0.78 eV。在t-TO-Ru79團簇方面, N2在Ru79團簇上類山谷區域呈現非常低的斷鍵活化能只有0.27 eV。透過電子結構分析,N2的2π*軌域會直接對到釕金屬團簇上類山谷區域中排列的Ru原子,使得不少的電荷轉移經由Ru的d軌域轉移至N2的2π*軌域才使得N2在釕金屬團簇上的斷鍵活化能降低。
    氫氧化鎳團簇與氧化石墨烯組成的材料是一種新型的材料並可以應用於電化學催化反應上。在這邊我們將一個Ni4團簇吸附於一個飽和的羥基氧化石墨烯表面(hGO)上並發現Ni4團簇會被氧化成氫氧化鎳的團簇穩定吸附於表面上(Ni4(OH)3/hGO)且放熱4.47 eV。接下來我們在這個新形成的Ni4(OH)3/hGO表面上進行CO氧化反應的可能反應機構研究-分別為Eley-Rideal (ER)、Langmuir-Hinshelwood (LH)以及carbonated反應機構。我們的計算結果顯示經ER反應機構第一個CO氧化形成CO2的活化能為0.14 eV,比經由LH (Ea = 0.65 eV)以及carbonated反應機構(Ea = 1.28 eV)還要小。CO經ER反應機構氧化形成第二個CO2的活化能為0.43 eV,仍然比CO經由LH反應機構氧化形成第二個CO2的活化能(Ea = 1.09 eV)還要小,代表CO分子在Ni4(OH)3/hGO表面上進行氧化反應可以經由ER反應機構進行。
    氧化鋅在催化aldol或是Knoevenagel縮合反應上是個有效的催化劑並且還能應用於感測乙醇分子的感測器上。這邊我們即探討乙醛與乙醇在(ZnO)12團簇上進行吸附以及C-C結合反應的可能反應路徑。首先在只有乙醛分子的反應部分,其主產物會是乙醛採用aldol反應機構中Zimmerman–Traxler model進行C-C結合反應生成3-hydroxylbutanal。 接著在只有乙醇分子的反應部分,並不會有任何產物自發地產生無論是經由乙醇脫氫形成的乙醛或是乙醇分子經C-C結合反應產生的丁醇分子。最後當乙醛與乙醇共吸附於(ZnO)12團簇上的反應部分,主產物會是乙醛與乙醇分子經類似aldol反應機構作C-C結合反應形成之2-buten-1-ol 。這個結果說明若要在(ZnO)12團簇上進行乙醛或乙醇之間的轉換反應,其反應速率與產物會依據乙醛的含量而有所變化。

    Using various nano clusters to catalyze different chemical reactions is one of the many important research issues in recent years. The N2 bond cleavage is the rate-limiting step in the synthesis of ammonia, and ruthenium is a catalyst well known for this reaction. Both of double-icosahedral Ru19 (DI-Ru19) and twinned truncated octahedral Ru79 (t-TO-Ru79) clusters have been investigated to catalyze the adsorption and dissociation of dinitrogen on the active valley-like (stepped) region in Ru19 and Ru79. On the DI-Ru19 cluster, our results show that the valley-like region of Ru19 cluster could dissociate N2 with the lowest reaction barrier 0.78 eV;which on the t-TO-Ru79 cluster, our results demonstrate that dissociating the N-N bond of a N2 molecule on the valley-like region of t-TO Ru79 cluster has a even much lower reaction barrier, 0.27 eV. By using electronic analysis, we found that the adsorbed N2 molecule is parallel to the close-packed Ru atoms on a valley-like active site in both of Ru19 and Ru79, causing much amount of charge transfer from the d orbital of Ru atoms to the 2π* orbital to produce this small barrier.
    Nickel hydroxide clusters and graphene oxide (GO) composites are novel nanomaterials in the application of electrochemical catalysts. In this work, we calculated the energy of Ni4 adsorbed on saturated hydroxyl graphene oxide (hGO), which formed a Ni4(OH)3 cluster on the hydroxyl graphene oxide (Ni4(OH)3/hGO) and released 4.47 eV. We subsequently studied the oxidation of CO on the Ni4(OH)3/hGO system via three mechanisms –Eley-Rideal (ER), Langmuir-Hinshelwood (LH) and carbonated mechanisms. Our results show that the activation energy for oxidation of the first CO molecule according to the ER mechanism is 0.14 eV, much smaller than that with LH (Ea = 0.65 eV), or with carbonated (Ea = 1.28 eV) mechanisms. The barrier of oxidation of the second CO molecule to CO2 with the ER mechanism increases to 0.43 eV, but still less than that via LH (Ea = 1.09 eV), indicating that CO could be effectively oxidized through the ER mechanism on the Ni4(OH)3/hGO catalyst.
    Zinc Oxide was an efficient catalyst for the aldol or Knoevenagel condensation reaction and could also be applied as the sensor for detecting ethanol. Here we have investigated the adsorption and C-C coupling reactions of ethanol and acetaldehyde on a (ZnO)12 cluster. First, with only two acetaldehyde molecules as reactants, the major product would be the 3-hydroxylbutanal formed by C-C coupling reaction via Zimmerman–Traxler model of aldol mechanism. Second, while with only two ethanol molecules, there is no product formed spontaneously, either acetaldehyde from ethanol dehydrogenation nor butanol by C-C coupling reaction of two ethanol molecules. Third, with coadsorption of one acetaldehyde and one ethanol molecules on (ZnO)12 cluster, the major product would be 2-buten-1-ol formed via C-C coupling reaction, in which the mechanism is similar to the aldol mechanism. These results demonstrate that the reactivity of C-C coupling reactions between ethanol and acetaldehyde on (ZnO)12 cluster depend on the concentration of acetaldehyde molecules.

    目錄 i 中文摘要 iii 英文摘要 v 第一章 緒論 1 第二章 理論與計算原理 5 §2-1 多電子系統計算上的近似 5 §2-2 Born-Oppenheimer近似(絕熱近似) 6 §2-3 Hartree近似 7 §2-4 Hartree-Fork近似 8 §2-5 密度泛函理論 (Density Function Theory,DFT) 9 §2-6 局部密度近似法(Local density function approximation, LDA) 12 §2-7 廣義梯度近似法(Generalized gradient approximation, GGA) 14 §2-8 空間週期性與布洛赫理論(Bloch Theorem) 16 §2-9 虛位勢 19 第三章 第一原理探討氮氣分子在高催化性釕金屬奈米團簇(雙二十面體Ru19 (Double-icosahedral Ru19)與雙截角八面體Ru79 (twinned truncated octahedral Ru79)上的斷鍵反應 23 §3-1 前言 23 §3-2 計算方法 26 §3-3氮氣分子在19顆雙二十面體釕金屬奈米團簇 (Double- icosahedral Ru19, DI-Ru19) 上的斷鍵反應研究 29 §3-4氮氣分子在79顆雙截角八面體釕金屬奈米團簇 (twinned truncated octahedral Ru79,t-TO-Ru79) 上的斷鍵反應研究 46 §3-5本章結論 56 §3-6參考文獻 58 第四章 第一原理探討一氧化碳分子於氫氧化鎳團簇與羥基氧化石墨烯組成之新型材料上的氧化反應 61 §4-1 前言 61 §4-2 計算方法 64 §4-3 結果與討論 68 §4-4 本章結論 90 §4-5參考文獻 92 第五章 第一原理探討乙醛及乙醇分子於氧化鋅團簇[(ZnO)12]上的脫氫與C-C結合反應機構 96 §5-1 前言 96 §5-2計算方法 98 §5-3結果與討論 101 §5-3-1:乙醛分子在(ZnO)12團簇上的轉換反應機構探討 101 §5-3-2:乙醇分子在(ZnO)12團簇上的轉換反應機構探討 110 §5-3-3:乙醇與乙醛在(ZnO)12團簇上的轉換反應機構探討 115 §5-3-4:乙醇與乙醛在(ZnO)12團簇上之反應性探討 120 §5-4本章結論 124 §5-5參考文獻 126 第六章 總結 129 附錄 密度泛函理論計算一氧化氮分子在銅金屬簇沸石材料與銅鐵金屬簇沸石材料上解離反應機構的探討 132 §A1-1 前言 132 §A1-2計算方法 134 §A1-3 結果與討論 137 §A1-3-1 純金屬Cu4以及雙金屬Cu3Fe團簇在ZSM-5中的形成與吸附探討 137 §A1-3-2 一氧化氮分子在純金屬Cu4-ZSM-5以及雙金屬Cu3Fe-ZSM-5沸石材料中之吸附與斷鍵探討 142 §A1-3-3 電子結構分析純金屬系統與雙金屬系統間之差異 150 §A1-3-4 雙NO分子在雙金屬Cu3Fe(Td)-ZSM-5上之轉換反應 153 §A1-4本章結論 155 §A1-5參考文獻 156

    第三章:
    (1) Smill, V. Nature 1999, 400, 415.
    (2) Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. Angew. Chem. Int. Ed. 2001, 40, 1061-1063.
    (3) Rod, T. H.; Logadottir, A.; Nørskov, J. K. J. Chem. Phys. 2000, 112, 5343-5347.
    (4) T. W. Hansen, J. B. Wagner, P. L. Hansen, S. Dahl, H. Topsøe and C. J. H. Jacobsen, Science 2001, 294, 1508-1510.
    (5) Zhang, C. J.; Lynch, M.; Hu, P., Surf. Sci. 2002, 496, 221-230.
    (6) Tennison, S. R. Catalytic Ammonia Synthesis, J.R. Jennings (Ed.); Plenum Press: New York USA, 1991.
    (7) Mortensen, J. J.; Hansen, L. B.; Hammer, B.; Nørskov, J. K. J. Catal. 1999, 182, 479-488.
    (8) Shi, H.; Jacobi, K.; Ertl, G. J. Chem. Phys. 1993, 99, 9248-9254.
    (9) Mortensen, J. J.; Morikawa, Y.; Hammer, B.; Nørskov, J. K. J. Catal. 1997, 169, 85-92.
    (10) Egeberg, R. C.; Dahl, S.; Logadottir, A.; Larsen, J. H.; Nørskov, J. K.; Chorkendorff, I. Surf. Sci. 2001, 491, 183-194.
    (11) Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2001, 3, 2007-2011.
    (12) Dahl, S.; Törnqvist, E.; Chorkendorff, I. J. Catal. 2000, 192, 381-390.
    (13) Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E; Nørskov, J. K. Phys. Rev. Lett. 1999, 83, 1814-1817.
    (14) Dooling, D. J.; Nielsen, R. J.; Broadbelt, L. J. A Chem. Eng. Sci. 1999, 54, 3399-3409.
    (15) Cao, Z.; Wan, H.; Zhang, Q. J. Chem. Phys. 2003, 119, 9178-9182.
    (16) van Harrevelt, R.; Honkala, K.; Nørskov, J. K.; Manthe, U. J. Chem. Phys. 2005, 122, 234702-1-8.
    (17) van Harrevelt, R.; Honkala, K.; Nørskov, J. K.; Manthe, U. J. Chem. Phys. 2006, 124, 026102-1-3.
    (18) Munter, T. R.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2008, 10, 5202-5206.
    (19) Ramsier, R. D.; Gao, Q.; Neergaard-Waltenburg, H.; Yates, Jr., J. T. J. Chem. Phys. 1994, 100, 6837-6845.
    (20) Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Science 2005, 307, 555-558.
    (21) Shetty, S.; Jansen, A. P. J.; van Santen, R. A. J. Phys. Chem. C 2008, 112, 17768-17771.
    (22) Ryu, j. H.; Han, S. S.; Kim, D. H.; Henkelman, G.; Lee, H. M. ACS Nano, 2011, 5, 8515-8522 .
    (23) Watari, N.; Ohnish, S. Phys. Rev. B 1998, 58, 1665-1677.
    (24) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493-497.
    (25) Valden, M.; Lai, X.; Goodman, D.W. Science 1998, 281, 1647-1650.
    (26) Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Nature 2008, 454, 981-984.
    (27) Shetty, S.; Jansen, A. P. J.; van Santen, R. A. J. Phys. Chem. C 2009, 113, 19749-19752.
    (28) Filot, I. A. W.; Shetty, S.; Hensen, E. J. M.; van Santen, R. A. J. Phys. Chem. C 2011, 115, 14204-14212.
    (29) Doye, J. P. K.; Wales, D. J. New J. Chem. 1998, 22, 733-744.
    (30) Philippot, K.; Chaudret, B. C. R. Chimie, 2003, 6, 1019-1034.
    (31) Van Hardeveld, R.; Hartog, F. Surf. Sci. 1969, 15, 189-230.
    (32) Boronata, M.; Corma, A.; Illas, F.; Radilla, J.; Rodenas, T.; Sabater, M. J. J. Catal. 2011, 278, 50-58.
    (33) Boronata, M.; Corma, A. J. Catal. 2011, 284, 138-147.
    (34) Chen, H. T.; Chang, J. G.; Ju, S. P.; Chen, H. L. J. Phys. Chem. Lett. 2010, 1, 739-742.
    (35) Weng, M. H.; Ju, S. P. J. Phys. Chem. C 2012, 116, 18803-18815.
    (36) Blackman, J. A. Handbook of Metal Physics, 2008, 5, 143-173.
    (37) Yang, Z.; Zhang, Y.; Fu, Z.; Wu, R. J. Phys. Chem. C 2012, 116, 19586-19589.
    (38) Blom, M. N.; Schooss, D.; Stairs, J. Kappes, M. M. J. Chem. Phys. 2006, 124, 044308-1-10.
    (39) Li, H. J.; Yeh, C. H.; Ho, J. J. Chem. Phys. Lett. 2013, 585, 149-152.
    (40) Wu, G.; Yang, M.; Guo, X.; Wang, J. J. Comput. Chem. 2012, 33, 1854-1861.
    (41) Yadav, M. K.; Mookerjee, A. Physica B 2010, 405, 3940-3942.
    (42) Kulkarni, B. S.; Krishnamurty, S.; Pal, S. J. Phys. Chem. C 2011, 115, 14615-14623.
    (43) Kerpal, C.; Harding, D. J.; Lyon, J. T.; Meijer, G.; Fielicke, A. J. Phys. Chem. C 2013, 117, 12153-12158.
    (44) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
    (45) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
    (46) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15-50.
    (47) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169-11186.
    (48) Perdew, J. P.; Chevary, J.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671-6687.
    (49) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953-17979.
    (50) Kresse, G. ; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
    (51) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188-5192.
    (52) Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510-1511.
    (53) Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305-337.
    (54) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901-9904.

    第四章:
    (1) Shelef, M.; McCabe, R. W. Catal. Today, 2000, 62, 35–60.
    (2) Twigg, M. V. Appl. Catal., B 2007, 70, 2–15.
    (3) Jansen, M. M. M.; Gracia, J. M.; Kizilkaya, A. C.; Nieuwenhuys, B. E. Niemantsverdriet, J. W. J. Phys. Chem. C 2010, 114, 17127–17135.
    (4) Kizilkaya, A. C.; Gracia, J. M.; Niemantsverdrie, J. W. J. Phys. Chem. C 2010, 114, 21672–21680.
    (5) Gustafson, J.; Westerström, R.; Balmes, O.; Resta, A.; van Rijn, R.; Torrelles, X.; Herbschleb, C. T.; Frenken, J. W. M.; Lundgren, E. J. Phys. Chem. C 2010, 114, 4580–4583.
    (6) Nakai, I.; Kondoh, H.; Shimada, T.; Resta, A.; Andersen, J. N.; Ohta, T. J. Chem. Phys. 2006, 124, 224712–8.
    (7) Chen, M. S.; Cai, Y.; Yan, Z.; Gath, K. K.; Axnanda, S.; Goodman, D. W. Surf. Sci. 2007, 601, 5326–5331.
    (8) Liu, W.; Zhu, Y. F.; Lian, J. S.; Jiang, Q. J. Phys. Chem. C 2006, 111, 1005–1009.
    (9) Li, Y.; Yu, Y.; Wang, J-G.; Song, J.; Li, Q.; Dong, M.; Liu, C-J. Appl. Catal. B, 2012, 125, 189–196.
    (10) Ma, T.; Fu, Q.; Su, H.-Y.; Liu, H.-Y.; Cui, Y.; Wang, Z.; Mu, R.-T.; Li, W.-X.; Bao, X.-H. Chem. Phys. Chem. 2009, 10, 1013–1016.
    (11) Su, H. Y.; Gu, X. K.; Ma, X. F.; Zhao, Y. H.; Bao, X. H.; Li, W. X. Catal. Today, 2011, 165, 89–95.
    (12) Allian, A. D.; Takanabe, K.; Fujdala, K. L.; Hao, X.; Truex, T. J.; Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. J. Am. Chem. Soc. 2011, 133, 4498–4517.
    (13) Rodrguez, J. A.; Feria, L.; Jirsak, T.; Takahashi, Y.; Nakamura, K.; Illas, F. J. Am. Chem. Soc. 2010, 132, 3177–3186.
    (14) Chen, H.-T.; Chang, J.-G.; Ju, S.-P.; Chen, H.-L. J. Comput. Chem. 2010, 31, 258−265.
    (15) Chen, H.-L.; Su, C.-H.; Chen, H.-T. Chem. Phys. Lett. 2012, 536, 100−103.
    (16) Li, H.-J.; Ho, J.-J. J. Phys. Chem. C 2012, 116, 13196–13201.
    (17) Lanzan1, G.; Nasibulin, A. G.; Laasonen, K.; Kauppinen, E. I. Nano Res. 2009, 2, 660–670.
    (18) Xue, W.; Wang, Z.-C.; He, S.-G.; Xie, Y. J. Am. Chem. Soc. 2008, 130, 15879–15888.
    (19) Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Nature, 2009, 458, 746–749.
    (20) Zhou, S.; Bongiorno, A. Sci Rep. 2013, 3, 2484−1−7.
    (21) Chen, Y.; Zhang, X.; Zhang, D.; Yu, P.; Ma, Y. Carbon, 2011, 49, 573–580.
    (22) Kumar, P. V.; Bernardi, M.; Grossman, J. C. ACS Nano, 2013, 7, 1638–1645.
    (23) Wei, Z.; Wang, D.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z.; Marder, S. R.; Berger, C.; King, W. P.; Heer, W. A.; Sheehan, P. E.; Riedo, E. Science, 2010, 328, 1373–1376.
    (24) Zhang, W.; Carravetta, V.; Li, Z.; Luo, Y.; Yang, J. J. Chem. Phys. 2009, 131, 244505–1–7.
    (25) Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Adv. Mater. 2010, 22, 4467–4472.
    (26) Boukhvalov, D. W.; Katsnelson, M. I. J. Am. Chem. Soc. 2008, 130, 10697–10701.
    (27) Wang, L.; Sun, Y. Y.; Lee, K.; West, D.; Chen, Z. F.; Zhao, J. J.; Zhang, S. B. Phys. Rev. B 2010, 82, 161406–1–4.
    (28) Wu, S.-Y.; Ho, J.-J. J. Phys. Chem.C 2014, 118, 26764-26771.
    (29) Yang, M.; Zhou, M.; Zhang, A.; Zhang, C. J. Phys. Chem. C 2012, 116, 22336−22340.
    (30) Li, F.; Zhao, J.; Chen, Z. J. Phys. Chem. C 2012, 116, 2507–2514.
    (31) Hu, J. J. Phys. Chem. C 2013, 117, 16005−16011.
    (32) Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2010, 132, 3270–3271.
    (33) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 7472–7477.
    (34) Tang, Y.; Liu, Y.; Guo, W.; Chen, T.; Wang, H.; Yu, S.; Gao, F. J. Phys. Chem. C 2014, 118, 24866−24876.
    (35) Matsumoto, Y.; Tateishi, H.; Koinuma, M.; Kamei, Y.; Ogata, C.; Gezuhara, K.; Hatakeyama, K.; Hayami, S.; Taniguchi, T.; Funatsu, A. J. Electroanal. Chem. 2013, 704, 233–241.
    (36) Rastgar, S.; Shahrokhian, S. Talanta, 2014, 119, 156–163.
    (37) Dong, B.; Zhou, H.; Liang, J.; Zhang, L.; Gao, G.; Ding, S. Nanotechnology, 2014, 25, 435403−1−7.
    (38) Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Wang, B.; Hou, M.; He, Y.; Liu, Q.; Mann, T.; Yang, P.; Zhang, M.; Liu, L. Chem. Mater. 2011, 23, 3509–3516.
    (39) Abellán, G.; Latorre-Sánchez, M.; Fornés, V.; Ribera, A.; García, H. Chem. Commun. 2012, 48, 11416–11418.
    (40) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452–8455.
    (41) Lee, D.; Seo, J. Sci Rep. 2014, 4, 7419–1–6.
    (42) Min, S.; Zhao, C.; Zhang, Z.; Chen, G.; Qian, X.; Guo, Z. J. Mater. Chem. A, 2015, 3, 3641-3650.
    (43) Zhu, Q.; Lu, Y. H.; Jiang, J. Z. J. Phys. Chem. Lett. 2011, 2, 1310–1314.
    (44) Wang, W. Kaxiras, E. New J. Phys. 2012, 12, 125012.
    (45) Kresse, G.; Hafner, J. Phys. Rev. B, 1993, 47, 558–561.
    (46) Kresse, G.; Hafner, J. Phys. Rev. B, 1994, 49, 14251–14269.
    (47) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15–50.
    (48) Kresse, G.; Hafner, J. Phys. Rev. B, 1996, 54, 11169–11186.
    (49) Perdew, J. P.; Burke, S. M.; Ernzerhof, H. Phys. Rev. Lett. 1996, 77, 3865−3868.
    (50) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B, 1976, 13, 5188–5192.
    (51) Yan, J.-A.; Chou, M. Y. Phys. Rev. B, 2010, 82, 125403–1–10.
    (52) Wu, M.; Burton, J. D.; Tsymbal, E. Y.; Zeng, X. C.; Jena, P. Phys. Rev. B, 2013, 87, 081406–1–5.
    (53) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901–9904.
    (54) Sheppard, D.; Henkelman, G. J. Comp. Chem. 2011, 32, 1769–1771.
    (55) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106–1–10.
    (56) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104–1–18.
    (57) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456–1465.
    (58) http://www.thch.uni-bonn.de/tc/
    (59) Antony, A.; Hakanoglu, C.; Asthagiri, A.; Weaver, J. F. J. Chem. Phys. 2012, 136, 054702 – 054709.
    (60) Grimme, S.; J. Comp. Chem. 2006, 27, 1787-1799.
    (61) Huang, S.-C.; Lin, C.-H.; Wang, J.-H. J. Phys. Chem. C 2010, 114, 9826–9834.
    (62) Yeh, C.-H.; Ho, J.-J. Chem. Phys. Chem. 2012, 13, 3194–3202.
    (63) Song, E. H.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115, 3678–3683.
    (64) Wu, P.; Du, P.; Zhang, H.; Cai, C. Phys. Chem. Chem. Phys. 2014, 16, 5640–5648.

    第五章:
    (1) Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R. S.; Zhang, Y. Adv. Funct. Mater. 2004, 14, 943-956.
    (2) Tang, Z. K.; Wang, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Appl. Phys. Lett.1998, 72, 3270-3272.
    (3) Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897-1899.
    (4) Choy, J. H;. Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Adv. Mater. 2003, 15, 1911-1914.
    (5) Kind, H.; Yan, H.; Law, M.; Messer, B.; Yang, P. Adv. Mater. 2002, 14, 158-160.
    (6) Ye, C. H.; Fang, X. S.; Hao, Y. F.; Teng, X. M.; Zhang, L. D. J. Phys. Chem. B 2005, 109, 19758-19765.
    (7) Zhang, Y.; Wang, N.; Gao, S. Chem. Mater. 2002, 14, 3564-3568.
    (8) Valyssieres, L. Adv. Mater. 2003, 15, 464-466.
    (9) Wang, Y. W.; Zhang, L. D.; Wang, G. Z.; Peng, X. S.; Chu, A. Q.; Liang, C. H. J. Cryst. Growth 2002, 234, 171-175.
    (10) Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.; Shim, H. W.; Suh, E. K.; Lee, C. J. Chem. Phys. Lett. 2002, 363, 134-138.
    (11) Zhang, X. H.; Xie, S. Y.; Jiang, Z. Y.; Zhang, X.; Tian, Z. Q.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. J. Phys. Chem. B 2003, 107, 10114-10118.
    (12) Kong, X. Y.; Ding, Y.; Wang, Z. L. J. Phys. Chem. B 2004, 108, 570-574.
    (13) Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. J. Am. Chem. Soc. 2005, 127, 2378-2379.
    (14) Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Chem. Mater. 2003, 15, 305-308.
    (15) Wu, D.; Huang, L. D.; Wang, Q. J.; Zhao, X. N.; Li, A. D.; Chen, Y. F.; Ming, N. B. Mater. Chem. Phys. 2006, 96, 51-54.
    (16) Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Adv. Funct. Mater. 2005, 15, 1945-1954.
    (17) Antony, J.; Chen, X. B.; Morrison, J.; Bergman, L.; Qianga, Y. Appl. Phys. Lett. 2005, 87, 241917-1-3.
    (18) Mahamuni, S.; Borgohain, K.; Bendre, B. S.; Leppert, V. J.; Risbud, S. H. J. Appl. Phys.1999, 85, 2861-2865.
    (19) Pesika, N. S.; Hu, Z.; Stebe, K. J.; Searson, P. C. J. Phys. Chem. B 2002, 106, 6985-6990.
    (20) Zhang, W. H.; Shi, J. L.; Wang, L. Z.; Yan, D. S. Chem. Mater. 2000, 12, 1408-1413.
    (21) Lu, X.; Xu, X.; Wang, N. Q.; Zhang, Q.; Ehara, M.; Nakatsuji, H. Chem. Phys. Lett. 1998, 291, 445-452.
    (22) Matxain, J. M.; Fowler, J. E.; Ugalde, J. M. Phys. Rev. A 2000, 62, 053201-1-10.
    (23) Jain, A.; Kumar, V.; Kawazoe, Y. Comput. Mat. Sci. 2005, 36, 258-262.
    (24) Wang, B.; Nagase, S.; Zhao, J.; Wang, G. J. Phys. Chem. C 2007, 111, 4956-4963.
    (25) Catlow, C. R. A.; Bromley, S. T.; Hamad, S.; Mora-Fonz, M,; Sokol, A. A.; Woodley, S. M. Phys. Chem. Chem. Phys. 2010,12, 786–811.
    (26) Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B. Sens. Actuator B-Chem. 2008, 132, 334-339.
    (27) Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S. Sens. Actuator B-Chem. 2012, 162, 237-243.
    (28) Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Appl. Phys. Lett. 2004, 84, 3654-3656.
    (29) Kazemi, A. S.; Afzalzadeh, R.; Abadyan, M. J. Mater. Sci. Technol. 2013, 29, 393-400.
    (30) Choudhury, M.; Nath, S. S.; Nath, R. K. J. Sens. Technol. 2011, 1, 86-90.
    (31) Illyaskutty, N.; Kohler, H.; Trautmann, T.; Schwotzerc, M.; Pillai, V. P. M. J. Mater. Chem. C 2013, 1, 3976-3984.
    (32) Korir, K. K.; Catellani, A.; Cicero, G. J. Phys. Chem. C 2014, 118, 24533-24537.
    (33) Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. Sci Rep. 2015, 5, 11070−1−8.
    (34) Tamaddon, F.; Amrollahi, M. A.; Sharafat, L. Tetrahedron Lett. 2005, 46, 7841-7844,
    (35) Alinezhad, H.; Salehian, F.; Biparva, P. Synth. Commun. 2012, 42, 102-108.
    (36) Yavari, I.; Beheshti, S. J. Iran Chem. Soc. 2011, 8, 1030-1035.
    (37) Kumar, B. V.; Naik, H. S. B.; Girija, D.; Kumar, B. V. J. Chem. Sci. 2011, 123, 615–621.
    (38) Sachdeva, H.; Saroj, R. Sci. World. J. 2013, 2013, 680671-1-8.
    (39) Tayebee, R.; Nasr, A. H.; Rabiee, S.; Adibi, E. Ind. Eng. Chem. Res. 2013, 52, 9538-9543.
    (40) Liu, Z.; Wang, X.; Cai, J.; Liu, G.; Zhou, P.; Wang, K.; Zhu, H. J. Phys. Chem. C 2013, 117, 17633-17643.
    (41) Kresse, G.; Hafner, J. Phys. Rev. B, 1993, 47, 558–561.
    (42) Kresse, G.; Hafner, J. Phys. Rev. B, 1994, 49, 14251–14269.
    (43) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15–50.
    (44) Kresse, G.; Hafner, J. Phys. Rev. B, 1996, 54, 11169–11186.
    (45) Perdew, J. P.; Burke, S. M.; Ernzerhof, H. Phys. Rev. Lett. 1996, 77, 3865−3868.
    (46) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B, 1976, 13, 5188–5192.
    (47) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901–9904.
    (48) Sheppard, D.; Henkelman, G. J. Comp. Chem. 2011, 32, 1769–1771.
    (49) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106–1–10.
    (50) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104–1–18.
    (51) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456–1465.
    (52) Grimme, S. J. Comp. Chem. 2006, 27, 1787-1799.
    (53) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Phys. Rev. Lett. 2004, 92, 246401-1-4.
    (54) Langreth, D. C.; Lundqvist, B. I.; Chakarova-Käck, S. D.; Cooper, V. R.; Dion, M.; Hyldgaard, P.; Kelkkanen, A.; Kleis, J.; Kong, L.; Li, S.; Moses, P. G.; Murray, E.; Puzder, A.; Rydberg, H.; Schröder, E.; Thonhauser, T. J. Phys.: Cond. Matt.2009, 21, 084203-1-15.
    (55) Klimeš, J.; Bowler, D. R.; Michaelides, A. J. Phys.: Cond. Matt. 2010, 22, 022201-1-5.
    (56) Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys. Rev. B 2011, 83, 195131-1-13.
    (57) Migues, A. N.; Vaitheeswaran, S.; Auerbach, S. M. J. Phys. Chem. C 2014, 118, 20283-20290.
    (58) Jin, Z.; Xu, C.; Yang, C.; Guo, J.; Sheng, F.; Chen, X. Nanosci. Nanotechnol. Lett. 2013, 5, 110-115.

    附錄:
    (1) Liu, G.; Gao, P-X. Catal. Sci. Technol.2011,1, 552–568.
    (2) Liu, S. W.; Horino, H.; Kokalj, A.; Rzeznicka, I.; Imamura, K.; Ma, Y. S.; Kobal, I.; Ohno, Y.; Hiratsuka, A.; Matsushima, T. J. Phys. Chem. B 2004, 108, 3828–3834.
    (3) Taylor, K. C. in The Catalytic Chemistry of Nitrogen Oxides,ed. Klimisch R. L.; Larson, J. G. Plenum, New York, USA, 1975, p. 173.
    (4) Hamada, H.; Kintaichi, Y.; Sasaki, M.; Ito, T. Appl. Catal. 1991,75, L1.
    (5) Obuchi, A.; Ohi, A.; Nakamura, M.; Ogata, A.; Mizuno, K.; Ohuchi, H. Appl. Catal., B 1993, 2, 71-80.
    (6) Kolmakov, A.; Stuiltz, J.; Goodman, D. W. J. Chem. Phys. 2000, 113, 7564-7570.
    (7) Di Valentin, C.; Pacchioni, G.; Chiesa, M.; Giamello, E.; Abbet, S.; Heiz, U. J. Phys. Chem. B 2002, 106, 1637-1645.
    (8) Burch, R.; Millington, J. Appl. Catal., B 1993, 2, 101–116.
    (9) Corma, A.; Palomares, A. E.; Fornes, V. Appl. Catal., B, 1997, 11, 233–242.
    (10) Li, Y.; Armor, J. N. Appl. Catal., B 1992, 1, L21–L25.
    (11) Palomares, A. E.; Marquez, F.; Valencia, S.; Corma, A. J. Mol. Catal. A: Chem. 2000, 162, 175–189.
    (12) Ruette, F.; Sánchez, M.; Sierraalta, A.; Mendoza, C.; Añez, R.; Rodríguez, L.; Lisboa, O.; Daza, J.; Manrique, P.; Perdomo, Z.; Rosa-Brussin, M. J. Mol. Catal. A. 2005, 228, 211-225.
    (13) Schay, Z.; Guczi, L.; Beck, A.; Nagy, I.; Samuel, V.; Mirajkar, S. P.; Ramaswamy, A.V.; Pál-Borbély, G. Catal. Today 2002, 75, 393-399.
    (14) Sun, Q.; Sachtler, W. M. H. Appl. Catal. B 2003, 42, 393–401.
    (15) Berthomieu, D.; Jardillier, N.; Delahay, G.; Coq, B.; Goursot, A. Catal. Today 2005, 110, 294–302.
    (16) Armor, J.N. Catal. Today 1995, 26, 147–158.
    (17) Piterse, J. A. Z.; Booneveld, S. Appl. Catal. B 2007, 73, 327–335.
    (18) Macleod, N.; Cropley, R.; Keel, J. M.; Lambert, R. M. J. Catal. 2004, 221, 20–31.
    (19) Davidová, M.; Nachtigallová, D.; Nachtigall, P.; Sauer, J. J. Phys. Chem. B 2004, 108, 13674–13682.
    (20) Iwamoto, M.; Yokoo, S.; Sacay, K.; Kagawa, S. J. Chem. Soc. Faraday Trans. 1980, 1, 1629–1638.
    (21) Iwamoto, M.; Furukawa, H.; Mine, Y.; Uemura, F.; Micuriya, S.; Kagawa, S. J. Chem. Soc. Chem. Commun. 1986, 111, 1272–1273.
    (22) Li, Y.; Hall, K. W. J. Catal. 1991, 129, 202–215.
    (23) Vann, W. D.; Wagner, R. L.; Castleman, A. W., Jr. J. Phys. Chem. A 1998, 102, 1708-1718.
    (24) Vann, W. D.; Wagner, R. L.; Castleman, A. W., Jr. J. Phys. Chem. A 1998, 102, 8804-8811.
    (25) Vann, W. D.; Bell, R. C.; Castleman, A. W., Jr. J. Phys. Chem. A 1999, 103,10846-10850.
    (26) Ford, M. S.; Anderson, M. L.; Barrow, M. P.; Woodruff, D. P.; Drewello, T.; Derrick, P. J.; Mackenzie, S. R. Phys. Chem. Chem. Phys. 2005, 7, 975-980.
    (27) Chang, C-C.; Ho, J-J. Phys. Chem. Chem. Phys. 2014, 16, 5393-5398.
    (28) Hanmura, T.; Ichihashi, M.; Kondow, T. Israel J.Chem. 2007, 47, 37-42.
    (29) Hanmura, T.; Ichihashi, M.; Okawa, R.; Kondow, T. Int. J. Mass Spectrom. 2009, 280, 184-189.
    (30) Holmgren, L.; Andersson, M.; Rosen, A. Chem. Phys. Lett.1998, 296, 167−172.
    (31) Hirabayashi, S.; Ichihashi, M. J. Phys. Chem. A 2014, 118, 1761-1768.
    (32) Baker, M. D.; Godber, J. Ozin, G. A. J. Phys. Chem. 1985, 89, 2299-2304.
    (33) Aydin, C.; Lu, J.; Shirai, M.; Browning, N. D.; Gates, B. C. ACS Catal. 2011, 1, 1613–1620.
    (34) Yamaguchia, A.; Shido, T.; Inada, Y.; Kogure, T.; Asakura, K.; Nomura, M.; Iwasawa, Y. Catal. Lett. 2000, 68, 139-145.
    (35) Nakhostin Panahi, P.; Salari, D.; Niaei, A.; Mousavi, S. M. J. Ind. Eng. Chem. 2013, 19, 1793-1799.
    (36) Zhang, T.; Liu, J.; Wang, D.; Zhao, Z.; Wei, Y.; Cheng, K.; Jiang, G.; Duan, A. Appl. Catal., B 2014, 148-149, 520-531.
    (37) Sultana, A.; Sasaki, M.; Suzuki, K.; Hamada, H. Catal. Commun. 2013, 41, 21-25.

    (38) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
    (39) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
    (40) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15-50.
    (41) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169-11186.
    (42) Perdew, J. P.; Burke, S. M.; Ernzerhof, H. Phys. Rev. Lett.1996, 77, 3865−3868.
    (43) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953-17979.
    (44) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
    (45) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188-5192.
    (46) van, H. Acta Crystallogr. Sect. 1990, B46, 731-735.
    (47) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/
    (48) Atoguchi, T.; Yao, S. J. Mol. Catal. A-Chem. 2003, 191, 281-288.
    (49) Nachtigallova, D.; Nachtigall, P.; Sierkab, M.; Sauer, J. Phys. Chem. Chem. Phys. 1999, 1, 2019-2026.
    (50) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901-9904.
    (51) Sheppard, D.; Henkelman, G. J. Comp. Chem. 2011, 32, 1769-1771.
    (52) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106-1-10.
    (53) Nose, S. J. Chem. Phys. 1984, 81, 511-519.
    (54) Hoover, W. Phys. Rev. A 1985, 31, 1695-1697.
    (55) Yen, M-Y.; Ho, J-J. Chem. Phys.2010, 373, 300-306.

    下載圖示
    QR CODE