研究生: |
陳柏綱 Bo-Gaun Chen |
---|---|
論文名稱: |
含主族元素 (S、Se、Te) 與過渡金屬 (Cr、Mn、Fe、Ru) 團簇化合物的合成及其反應性探討 Main Group (S, Se, or Te)-Containing Group 6-8 (Cr, Mn, Fe, or Ru) Carbonyl Clusters: Synthesis, Reactivity, Electrochemistry, and Theoretical Calculations |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 236 |
中文關鍵詞: | 團簇物 |
英文關鍵詞: | Cluster |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Te─Fe─Cu─X 化合物之合成
利用 [TeFe3(CO)9]2− 在 THF 溶液環境下與一當量 CuX (X = Cl、Br、I) 於冰浴中反應,可生成錯合物 [TeFe3(CO)9CuX]2− (X = Cl、Br、I)。將主體與引入的 CuX 當量數比例改為 1:2~3 在 THF 或 CH3CN 於冰浴中反應,會生成錯合物 [TeFe3(CO)9Cu2X2]2− (X = Cl、Br、I)。另一方面,團簇物 [TeFe3(CO)9CuX]2− (X = Cl、Br、I) 可與一當量的 [Cu(CH3CN)4]BF4 試劑反應,擴核形成結構 [{TeFe3(CO)9}2Cu3X]2− (X = Cl、Br、I)。[TeFe3(CO)9Cu2X2]2− (X = Cl、Br) 若是與一當量 [Cu(CH3CN)4]BF4 反應,則可形成穩定結構 [{TeFe3(CO)9}2Cu4X2]2− (X = Cl、Br)。
2. E─Ru─Cr─Cu (E = S、Se) 化合物之合成
將 Ru3(CO)12、Cr(CO)6 與 E (E = S、Se powder) 以 Ru : Cr : E 的原子比例為 1:2:2 於 ~ 4 M KOH 之 MeOH 環境下加熱,將生成團簇物 [E2Ru3Cr(CO)10]2− (E = S、Se)。錯合物 [S2Ru3Cr(CO)10]2− 可與一當量的 [Cu(CH3CN)4]BF4 於低溫下反應,耦合形成 [{S2Ru3Cr(CO)10}2(CuNCCH3)2]2−。上述三種團簇物結構中有罕見 Ru─Cr 鍵,並且均具有缺電子的特性。
3. E─Mn (E = S、Te) 化合物之合成
將 Mn2(CO)10 與 S powder 以 Mn : S 的原子比例為 4:10 於 4 M KOH 之 MeOH 溶液環境下反應,將生成巨大的團簇物 [S10Mn6(CO)18]4−。如果使用 Te powder,以 Mn:Te 的原子比例為 9:10 於 ~ 1 M KOH 之 MeOH 中於低溫下反應,則會生成錯合物 [Te3Mn2(CO)8]2−。前者的結構具有豐富的轉換特性,後者結構則具有良好的反應性可作為起始物用以開發新結構。
4. S─Mn─Cr 化合物之合成
[S2Mn3(CO)9]− 在 4 M KOH 的 MeOH 溶液中與一當量 Cr(CO)6 於室溫下反應,可生成團簇物 [HS2Mn3Cr(CO)14]−。若改變反應比例與兩當量的 Cr(CO)6 反應,將生成團簇物 [HS2Mn3Cr2(CO)19]−。錯合物 [HS2Mn3Cr(CO)14]− 可藉外加一當量的 Cr(CO)6,於 CH2Cl2 溶液中加熱轉換成 [HS2Mn3Cr2(CO)19]−。
針對上述一系列新開發出的結構,其反應機構、物性、化性及電化學的性質分析,我們利用密度泛函數理論 (Density Functional Theory) 進行分子模擬並以 B3LYP 層級進行理論計算作為實驗結果的印證。
1. Synthesis of Te─Fe─Cu─X complexs
When [TeFe3(CO)9]2− was treated with 1 equiv of CuX in THF in an ice-water bath, clusters [TeFe3(CO)9CuX]2− (X = Cl, Br, I) were formed, respectively. When the reactions were carried out in the molar ratio of 1: 2~3 in THF or CH3CN in an ice-water bath, [TeFe3(CO)9Cu2X2]2− (X = Cl, Br, I) could be obtained. On the other hand, [TeFe3(CO)9CuX]2− (X = Cl, Br, I) could react with 1 equiv of [Cu(CH3CN)4]BF4 to form clusters [{TeFe3(CO)9}2Cu3X]2− (X = Cl, Br, I), respectively. [TeFe3(CO)9Cu2X2]2− (X = Cl, Br) could further react with 1 equiv of [Cu(CH3CN)4]BF4 to form clusters [{TeFe3(CO)9}2Cu4X2]2− (X = Cl, Br), respectively.
2. Synthesis of E─Ru─Cr─Cu (E = S, Se) complexs
When Ru3(CO)12 and Cr(CO)6 were treated with E (E = S, Se powder)/KOH (4M) in refluxing MeOH with the atomic ratio of Ru:Cr:E = 1:2:2, clusters [E2Ru3Cr(CO)10]2− (E = S, Se) were formed, respectively. [S2Ru3Cr(CO)10]2− could react with 1 equiv of [Cu(CH3CN)4]BF4 in low temperature to form cluster [{S2Ru3Cr(CO)10}2(CuNCCH3)2]2−. This series of clusters contains rare Ru─Cr bonds and are electron deficient species.
3. Synthesis of E─Mn (E = S, Te) complexs
When Mn2(CO)10/KOH (4M) reacted with S powder (atomic ratio of Mn:S = 4:10) in MeOH, large cluster [S10Mn6(CO)18]4− was formed. If Mn2(CO)10 was treated with Te powder/1 M KOH (atomic ratio of Mn:Te = 9:10) in MeOH, complex [Te3Mn2(CO)8]2− was formed. [S10Mn6(CO)18]4− and [Te3Mn2(CO)8]2− are both reactive species and involve in many interesting structural transformations in E─Mn (E = S, Te) systems.
4. Synthesis of S─Mn─Cr complexs
When [S2Mn3(CO)9]−/KOH (4M)/MeOH was treated with 1 equiv of Cr(CO)6, [HS2Mn3Cr(CO)14]− was formed. If [S2Mn3(CO)9]−/KOH (4 M)/MeOH was treated with 2 equiv of Cr(CO)6, [HS2Mn3Cr2(CO)19]− was formed. [HS2Mn3Cr(CO)14]− could further react with Cr(CO)6 in CH2Cl2 to form cluster [HS2Mn3Cr2(CO)19]−. In addition, the formation, the nature, and some electrochemistry of this new series of clusters are further understood by molecular calculations at the B3LYP level of the density functional theory.
[1] (a) Reynolds, M. A.; Guzei, L. A.; Angelici, R. J. J. Am. Chem. Soc. 2002, 124, 1689. (b) Bianchini, C.; Meli, A. Acc. Chem. Res. 1998, 31, 109.
[2] Hidai, M.; Kuwata, S. Acc. Chem. Res. 2000, 33, 46.
[3] Dos Santos, P. C.; Dean, D. R.; Hu, Y.; Ribbe, M. W. Chem. Rev. 2004, 104, 1159.
[4] Berlinguette, C. P.; Holm, R. H. J. Am. Chem. Soc. 2006, 128, 11993.
[5] Peters, J. W.; Stowell, M. H. B.; Soltis, S. M.; Finnegan, M. G.; Johnson,M. K.; Rees, D. C. Biochemistry 1997, 36, 1181.
[6] Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.
[7] Turner, D. L.; Vaid, T. P.; Stephens, P. W.; Stone, K. H.; DiPasquale, A. G.; Rheingold, A. L. J. Am. Chem. Soc. 2008, 130, 14.
[8] Ruiz. E.; Cauchy, T.; Cano, J.; Costa, R.; Tercero, J.; Alvarez, S. J. Am. Chem. Soc. 2008, 130, 7420.
[9] Mednikov. E. G.; Jewell, M. C.; Dahl, L. F. J. Am. Chem. Soc. 2007, 129, 11619.
[10] Chitsaz, S.; Fenske, D.; Fuhr, O. Angew. Chem., Int. Ed. 2006, 45, 8055.
[11] Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.
[12] Phull, H.; Alberti, D.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Angew. Chem., Int. Ed. 2006, 45, 5331.
[13] (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004. (b) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. (c) Baerends, E. J. ADF, ADF2006.01; Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2004. http://www.scm.com (accessed Dec 2007). (d) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
[14] Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2005, 44, 2531.
[15] Shieh, M.; Ho, C.-H. C. R. Chimie 2005, 8, 1838.
[16] (a) Shieh, M.; Tsai, Y.-C.; Cherng, J.-J.; Shieh, M.-H.; Chen, H.-S.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H. Organometallics 1997, 16, 456. (b) Cherng, J.-J.; Tsai, Y.-C.; Ueng, C.-H.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Organometallics 1998, 17, 255. (c) Shieh, M.; Chen, H.-S.; Lai, Y.-W. Organometallics 2004, 23, 4018.
[17] Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. Engl. 1999, 38, 1252.
[18] Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem. Eur. J. 2001, 7, 3152.
[19] (a) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421. (b) Shieh, M.; Hsu, M.-H. J. Cluster Sci. 2004, 15, 91.
[20] Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W.; Liu, H.-L.; Her, J. L. Chem. Eur. J. 2007, 13, 6605.