簡易檢索 / 詳目顯示

研究生: 林子文
Lin, Tzu-Wen
論文名稱: 矽量子點之光電特性研究
Study on Silicon Quantum Dots for Optoelectronic Properties
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 矽量子點光致螢光電致螢光低壓化學氣相沉積
英文關鍵詞: silicon quantum dot, photoluminescence, electroluminescence, LPCVD
論文種類: 學術論文
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗之矽量子點以低壓化學沉積氣相系統LPCVD(low pressure chemical vapor deposition)製備,利用調控制SiH2Cl2 及NH3兩種氣體流量成長氮化矽之薄膜,並固定其厚度,再單純通以SiH2Cl2調控沉積時間成長不同大小之三明治結構矽量子點,並由穿透式電子顯微鏡TEM(transmission electron microscopy)影像證實不同沉積時間之下量子點存在於材料中,並後續將材料於1100˚C常壓氮氣下退火2小時。進而利用低略角X光繞射GIXRD (grazing incidence X-Ray diffraction)鑑定材料中退火前後之結晶晶相並利用Scherrer formula推算不同結晶相之平均量子點晶粒大小。再者利用Raman光譜鑑定其退火前後材料中是否有奈米結晶存在。並利用光致螢光光譜PL(photoluminescence)觀測量子點退火前後發光波段及利用Park經驗公式推算可能含有之量子點大小,並利用1931 CIE color space鑑別材料之混和色光。
    最後將基板上之量子點材料切割製作成電致螢光EL(electroluminescence) 發光元件並利用積分球量測其退火前後之元件EL光譜圖發光波段及發光強度且亦利用1931 CIE color space鑑別元件所發出之混和色光座標。

    摘要 I 圖目錄 IV 表目錄 X 第一章 緒論 1 1.1 簡介 1 1.2 常見量子點應用 2 1.3 研究動機及目的 6 第二章 基本理論 9 2.1 薄膜沉積原理簡介 9 2.2 量子點之特性及原理簡介 11 第三章 實驗流程及檢測技術 21 3.1 矽量子點製備實驗流程 23 3.1.1 低壓化學氣相沉積系統製備矽量子點 23 3.2 矽量子點檢測技術 31 3.2.1 穿透式電子顯微鏡影像鑑定;TEM 31 3.2.2 薄膜X光繞射晶相鑑定;XRD 34 3.2.3 光致螢光放射系統;PL 39 3.2.4 拉曼光譜檢測技術;Raman 43 3.2.5 電致螢光放射系統;EL 46 第四章 實驗結果與討論 52 4.1 矽量子點成長機制 52 4.2 矽量子點分析技術檢測結果 54 4.2.1 穿透式電子顯微鏡影像分析;TEM 54 4.2.2 低略角薄膜X光繞射晶相鑑定分析;GIXRD 66 4.2.3 拉曼光譜分析;Raman spectrum 72 4.2.4 光致螢光光譜;PL spectrum 74 4.2.5 電致螢光光譜;EL spectrum 84 第五章 結論 98 參考文獻 100

    [1] http://www.i-micronews.com/lectureArticle.asp?id=3065
    [2] http://edress253.blogspot.tw/2011/11/what19771116.html
    [3] 楊智惠、黃耿迷、王英基、林裕城,"量子點—奈米彩虹標籤",科學發展,422 期(2008 年2 月)。
    [4] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S.Nakamura, Role of Self-Formed InGaN Quantum Dots for Exciton Localization in the Purple Laser Diode Emitting at 420 nm, Appl. Phys. Lett. 70, 981 (1997).
    [5] eshare.stut.edu.tw/EshareFile/2012_2/2012_2_b73b29ab.doc
    [6] M. Zhang, P. Bhattacharya and W. Guo, InGaN/GaN Self-Organized Quantum Dot Green Light Emitting Diodes with Reduced Efficiency Droop, Appl. Phys. Lett. 97, p011103-011105 (2010).
    [7] 郭文泉,"氮化銦鎵/氮化鎵多層量子井之光學特性研究",國立中央大學物理研究所碩士論文,中華民國八十九年六月。
    [8] http://www.me.ncu.edu.tw/teacher/Teacher-17/myweb4.new_page_11._htm
    [9] 林文彬,"量子點結構與光譜性質關聯之探討",國立中山大學材料科學所碩士論文(2005)。
    [10] A.J. Nozik, Quantum Dot Solar Cells, Physica E 14, 115-120 (2002).
    [11] 葉人銓,"以高電流密度測試異質接面電晶體之技術研發及用沉積氮化矽來保護磷化銦鎵/砷化鎵異質接面雙極性電晶體之研究",國立東華大學材料科學與工程研究所碩士論文(2005)。
    [12] L. T. Canham, Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers, Appl. Phys. Lett. 57, 1046-1048 (1990).
    [13] N. M. Park, C. J. Choi, T. Y. Seong and S. Ju. Park, Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Phys. Rev. Lett. 86, 1355-1357 (2001).
    [14] N. M. Park, T. S. Kim and S. J. Park, Band Gap Engineering of Amorphous Silicon Quantum Dots for Light-Emitting Diodes, Appl. Phys. Lett. 78, 2575-2577 (2001).
    [15] Y. Q. Wang, Y. G. Wang, L. Cao and Z. X. Cao, High-Efficiency Visible Photoluminescence from Amorphous Silicon Nanoparticles Embedded in Silicon Nitride, Appl. Phys. Lett. 83, 3474-3476 (2003).
    [16] Y.Q.Wang, W. D. Chen, X. B. Liao and Z. X. Cao, Amorphous Silicon Nanoparticles in Compound Films Grown on Cold Substrates for High-Efficiency Photoluminescence, Nanotechnology 14, 1235-1238 (2003).
    [17] Y. K. Huang, C. P. Liu, Y. L. Lai, C. Y. Wang, Y. F. Lai and H. C. Chung, Structural and Optical Properties of Cubic-InN Quantum Dots Prepared by Ion Implantation in Si (100) Substrate, Appl. Phys. Lett. 91, 091921-091923 (2007).
    [18] M. Shalchian, J. Grisolia, G. B. Assayag, H. Coffin, S. M. Atarodi and A. Claverie, From Continuous to Quantized Charging Response of Silicon Nanocrystals Obtained by Ultra-Low Energy Ion Implantation, Solid-State Electronics 49, 1198-1205 (2005).
    [19] J. P. Zhao, Y. Meng, D. X. Huang and W. K. Chu, Sn Quantum Dots Embedded in SiO2 Formed by Low Energy Ion Implantation, J. Vac. Sci. Technol. B 25, 796-800 (2007).
    [20] J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens and A. Polman, Spectral Tuning of Plasmon-Enhanced Silicon Quantum Dot Luminescence, Appl. Phys. Lett. 88, 131109-131111 (2006).
    [21] http://www.etafilm.com.tw/PVD_Sputtering_Deposition_ch.html
    [22] E. C. Cho, S. Park, X. Hao, D. Song,G. Conibeer, S. C. Park and M. A. Green, Silicon Quantum Dot/Crystalline Silicon Solar Cells, Nanotechnology 19, 245201 (5) (2008).
    [23] X. J. Hao, E. C. Cho, C. Flynn, Y. S. Shen, G. Conibeer and M. A. Green, Effects of Boron Doping on the Structural and Optical Properties of Silicon Nanocrystals in a Silicon Dioxide Matrix, Nanotechnology 19, 424019 (8) (2008).
    [24] X.J. Hao, E. C. Cho, C. Flynn , Y. S. Shen, S. C. Park, G. Conibeer and M. A. Green, Synthesis and Characterization of Boron-Doped Si Quantum Dots for All-Si Quantum Dot Tandem Solar Cells, Solar Energy Materials and Solar Cells 93, 273-279 (2009).
    [25] S. Park, E. Cho, D. Song, G. Conibeer and M. A.Green, n-Type Silicon Quantum Dots and p-Type Crystalline Silicon Heteroface Solar Cells, Solar Energy Materials and Solar Cells 93, 684-690 (2009).
    [26] L. Wu, M. Dal, X. Huang, Y. Zhang, W. Li, J. Xu and K. Chen, Room Temperature Electron Tunneling and Storage in a Nanocrystalline Silicon Floating Gate Structure, Journal of Non-Crystalline Solids 338, 318-321 (2004).
    [27] K. Ichikawa, P. Punchaipetch, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, E. Takahashi, T. Hayashi and K. Ogata, Electron Injection into Si Nanodot Fabricated by Side-Wall Plasma Enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys. 44, L836-L838 (2005).
    [28] K. Ichikawa, P. Punchaipetch, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, A. Tomyo, E. Takahashi, T. Hayashi and K. Ogata, New Fabrication Technique Using Side-Wall-Type Plasma-Enhanced Chemical-Vapor Deposition for a Floating Gate Memory with a Si Nanodot, J. Korean Phys.Soc. 49, 569-576 (2006).
    [29] G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richard, A. Shalav and K. L. Lin, Silicon NanoStructures for Third Generation Photovoltaic Solar Cells, Thin Sol. Films. 511, 654-662 (2006).
    [30] G. R. Lin, Y. H. Pai and C. T. Lin, Microwatt MOSLED Using SiOx With Buried Si Nanocrystals on Si Nano-Pillar Array, JLT 26, 1486-1491 (2008).
    [31] D. Das, D. Raha and K. Bhattacharya, Evolution of nc-Si Network and the Control of Its Growth by He/H2 Plasma Assistance in SiH4 at PECVD, JNN 9, 5614-5621 (2009).
    [32] B. H. Lai, C. H. Cheng, Y. H. Pai and G. R. Lin, Plasma Power Controlled Deposition of SiOx with Manipulated Si Quantum Dot Size for Photoluminescent Wavelength Tailoring, Opt. Express .18, 4449-4456 (2010).
    [33] C. H. Lin, W. Y. Uen, Y. C. Huang, Z. Y. Li, S. M. Liao, T. N. Yang, S. M. Lan and Y. H. Huang, Fabrication of Whitely Luminescent Silicon-Rich Nitride Filmsby Atmospheric Pressure Chemical Vapor deposition, Jpn. J. Appl. Phys. 47, 4696-4699(6)(2008).
    [34] C. H. Lin, W. Y. Uen, S. M. Lan, Y. C. Huang, S. M. Liao, Z. Y. Li, T. N. Yang, C. T. Ku, M. C. Chen and Y. H. Huang, Luminescence Mechanisms of Silicon-Rich Nitride Films Fabricated by Atmospheric Pressure Chemical Vapor Deposition in N2 and H2 Atmospheres, J. Appl. Phys.105, 053107 (6) (2009).
    [35] T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, Silicon Quantum Dot Nucleation on Si3N4, SiO2 and SiOxNy Substrates for Nanoelectronic Devices, J. Cryst. Growth. 209, 1004-1008 (2000).
    [36] T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, C. Busseret, A. Souifi and G. Guillot, Low Pressure Chemical Vapor Deposition Growth of Silicon Quantum Dots on Insulator for Nanoelectronics Devices, Appl. Surf. Sci. 164, 29-34 (2000).
    [37] S. Miyazaki, Y. Hamamoto, E. Yoshida, M. Ikeda and M. Hirose, Control of Self-Assembling Formation of Nanometer Silicon Dots by Low Pressure Chemical Vapor Deposition, Thin Sol. Films. 369, 55-59 (2000).
    [38] Y. C. Peng, M. Ikeda and S. Miyazaki, Formation of Self-Assembly and the Mechanism of Si Nanoquantum Dots Prepared by Low Pressure Chemical Vapor Deposition, Acta. phys. sin-ov. ed. 52, 3108-3113 (2003).
    [39] F. Mazen, T. Baron, G. Bremond, N. Buffet, N. Rochat, P. Mur and M. N. Semeria, Characteristics of Atomic-Layer-Deposited Al2O3 High-K Dielectric Films Grown on Ge Substrates, J. Electrochem. Soc.150, G203-G208 (2003).
    [40] I. Crupi, D. Corso, S. Lombardo, C. Gerardi, G. Ammendola, G. Nicotra, C. Spinella, E. Rimini and M. Melanotte, Memory Effects in MOS Devices Based on Si Quantum Dots, Mat Scieng C-Bio S. 23, 33-36 (2003).
    [41] K. Makihara, J. Xu, M. Ikeda, H. Murakami, S. Higashi and S. Miyazaki, Characterization of Electronic Charged States of P-Doped Si Quantum Dots Using AFM/Kelvin Probe, Thin Sol. Films. 508, 186-189 (2006).
    [42] A. Beaumont and A. Souifi, Transient Charging Current Measurements and Modelling in Silicon Nanocrystal Floating-Gate Devices, Sol St Electr.53, 42-48(2009).
    [43] http://www.ndl.narl.org.tw/web/index.html
    [44] http://elearning.stut.edu.tw/caster/3/no3/3-3.htm
    [45] 羅聖全,"電子顯微鏡介紹-TEM" : http://www.materialsnet.com.tw/
    AD/ADImages/.../EM/.../FE-TEM010.pdf。
    [46] 羅聖全、江正誠、林智仁、陳淑貞、林麗娟、洪健龍,"電子顯微鏡試片製備技術總論",工業材料雜誌206期,93年2月。
    [47] http://phys.thu.edu.tw/~hlhsiao/060929.pdf
    [48] 林麗娟," X光繞射原理及其應用",工業材料雜誌86期,83年2月。
    [49] 鄭信民、林麗娟," X光繞射應用簡介",工業材料雜誌181期,91年1月。
    [50] 謝嘉民、賴一凡、林永昌、枋志堯,"光激發螢光量測的原理、架構及應用",奈米通訊第十二卷第二期。
    [51] http://en.wikipedia.org/wiki/Raman_spectroscopy
    [52] 廖藝澤"濺鍍氮氧化矽薄膜及氮氧化矽/矽多層膜之結構與發光性質研究", 國立台灣科技大學材料科學與工程研究所碩士學位論文。
    [53] http://www.lightports.com/datasheet/Integrating%20Sphere.pdf
    [54] http://www.rapi-tech.com.tw/front/bin/ptdetail.phtml?Part=Spectrometer-p66&Category=6
    [55] http://en.wikipedia.org/wiki/Shape_factor_(X-ray_diffraction)
    [56] M. Wang, D. Li, Z. Yaun, D. Yang and D. Que, Photoluminescence of Si-Rich Silicon Nitride : Defect-Related States and Silicon Nanoclusters, Appl. Phys. Lett. 93, 131903 (3) (2007).
    [57] A. K. Panchal and C. S. Solanki, Fabrication of Silicon Quantum Dots in SiNx Multilayer Using Hot-Wire CVD, J. Cryst. Growth. 311, 2659-2663 (2009).
    [58] L. W. Wang and A. Zunger, Electronic Structure Pseudopotential Calculations of Large (~1000 Atoms) Si Quantum Dots, J. Phys. Chem., 98, 2158-2165(1994).
    [59] Y.H. So, A. Gentle, S. Huang, G. Conibeer, and M.A. Green, Size Dependent Optical Properties of Si Quantum Dots in Si-rich Nitride/Si3N4 Superlattice Synthesized by Magnetron Sputtering, J. Appl. Phys. 109, 064302(2011).
    [60] Tae-Youb Kim, Nae-Man Park, Kyung-Hyun Kim, and Gun Yong Sung, Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films, Appl. Phys. Lett. 85, 5355(2004).
    [61] T. W. Kim, C. H. Cho, B. H. Kim and S. J. Park, Quantum Confinement Effect in Crystalline Silicon Quantum Dots in Silicon Nitride Grown Using SiH4 and NH3, Appl. Phys. Lett. 88, 123102(2006).
    [62] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, Electrically Driven Single-Photon Source, Science, 295, 102 (2002).
    [63] M. B. Ward, D. C. Unitt, Z. Yuan, P. See, R. M. Stevenson, K. Cooper, P. Atkinson, I. Farrer, D. A. Ritchie, A. J. Shields, Single quantum dot electroluminescence near 1.3 μm, Physica E, 21, 390- 394 (2004).
    [64] I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, Narrow Luminescence Linewidth of a Silicon Quantum Dot, Phys. Rev. Lett. 94, 087405(2005).

    無法下載圖示 本全文未授權公開
    QR CODE