簡易檢索 / 詳目顯示

研究生: 林彥瑜
Lin, Yen-Yu
論文名稱: 硬蜱的宿主動物以及和是否寄生人類的關係
Host associations of the hard tick (Ixodidae) and its affiliation with humans
指導教授: 郭奇芊
Kuo, Chi-Chien
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 硬蜱宿主脊椎動物寄生關係網路分析
英文關鍵詞: Hard ticks, Hosts, Vertebrates, Parasitism, Network analysis
DOI URL: http://doi.org/10.6345/NTNU202001668
論文種類: 學術論文
相關次數: 點閱:207下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硬蜱(Ixodidae)能傳播許多疾病,對人類健康有相當程度的威脅。多數種類硬蜱會經歷需要寄生於宿主身上,吸食宿主血液才能蛻化為下一個生活史階段或產卵的幼蟲、若蟲和成蟲階段,也因此適當的宿主動物,尤其是陸生脊椎動物的存在,為硬蜱族群存活不可或缺的一環。本研究參考The Hard Ticks of the World以及1,450篇相關文獻,收集了全世界705種硬蜱共6,016種硬蜱和陸生脊椎動物宿主(以科為階層)的寄生關係。結果發現多數硬蜱種類(466種)的宿主數量介於1-10科,但記錄到最多宿主的微小扇頭蜱(Rhipicephalus microplus),宿主數量可達65科;同樣地,247科宿主中,多數宿主(158科宿主)被少於10種硬蜱寄生,但亦有16科的宿主寄生有超過100種硬蜱,其中哺乳綱動物佔了15科(包括人類自人科分出自成一類群),鳥綱僅占1科。各個硬蜱屬亦以利用哺乳綱動物宿主的頻度最高,其次多為鳥綱,爬行綱動物宿主則被Amblyomma屬硬蜱利用最多次。會叮咬人類的硬蜱,其宿主數量顯著高於不會叮咬人類的硬蜱,且和哺乳綱動物的宿主數量最相關。最後藉由網路分析,發現人類和23科哺乳綱,10科鳥綱以及1科爬行綱動物有較多共同的寄生硬蜱種類,鳥綱中的雉科、鶇科亦與哺乳綱動物有許多相同硬蜱。本研究受限於宿主的多寡,會受到硬蜱種類被研究程度所影響,以及宿主只區分到科而非種的層級,但是本研究首次大規模收集全世界硬蜱的宿主資料,尤其得知人類和哪些動物宿主寄生有相同種類的硬蜱,能夠幫助推估人類和哪些特定動物宿主之間,較可能互相傳播蜱媒疾病。

    Hard ticks (Ixodidae) can transmit many diseases to humans. The life cycle of most tick species includes larva, nymph and adult stages that require blood meals from hosts to molt or lay eggs. Therefore, suitable hosts, particularly terrestrial vertebrates, are indispensable for the survival of hard ticks. In this study, I scrutinized 1,450 scientific references in addition to the book “The Hard Ticks of the World” and recorded 6,016 unique tick-host (family level) associations of 705 species of hard ticks. I found that the number of hosts of most tick species was limited to one to 10 host families, but one species with the most hosts, Rhipicephalus microplus, can be observed on as many as 65 families. Similarly, most vertebrate hosts (158 out of a total of 247 families) were infested with fewer than 10 tick species; however, there were 16 families that hosted more than one hundred species of ticks, including 15 mammalian and one avian families (human being Homo sapiens was herein separated from other members of Hominidae). Mammals were also parasitized by different genera of ticks with the highest frequency, followed mostly by birds. Reptiles were more frequently infested with Amblyomma ticks. Tick species that infested humans parasitized more host families, especially mammalian hosts, compared to those that did not infest humans. Lastly, network analyses revealed that humans hosted the same tick species with 23 mammalian, 10 avian, and one reptilian families. Additionally, among birds, pheasants and thrushes more frequently shared tick species with mammals. In this study, the number of host families could by determined by differential sampling efforts for different tick species; besides, hosts were identified to family instead of species level. Nevertheless, this is the first study to document hosts of all hard tick species. More importantly, the information on shared tick species among humans and certain groups of vertebrates could help predict which animals might transmit tick-borne pathogens to humans.

    致謝 I 中文摘要 II Abstracts III 目錄 IV 一、前言 1 二、研究材料與方法 5 三、結果 6 四、討論 10 參考文獻 13 圖 19 附錄一 31

    Adakal, H., Biguezoton, A., Zoungrana, S., Courtin, F., De Clercq, E. M., Madder, M. (2013) Alarming spread of the Asian cattle tick Rhipicephalus microplus in West Africa-another three countries are affected: Burkina Faso, Mali and Togo. Experimental & Applied Acarology, 61: 383-386.
    Adinci, K. J., Akpo, Y., Adoligbe, C., Adehan, S. B., Yessinou, R. E., Sodé, A. I., Mensah, G. A., Youssao, A., Sinsin, B., Farougou, S. (2018) Preliminary study on the tick population of Benin wildlife at the moment of its invasion by the Rhipicephalus microplus tick (Canestrini, 1888). Veterinary World, 11: 845-851.
    Bouchard, C., Dibernardo, A., Koffi, J., Wood, H., Leighton, P. A., Lindsay, L. R. (2019) Increased risk of tick-borne diseases with climate and environmental changes. Canada Communicable Disease Report, 45: 83-89.
    Clifford, C. M., Hoogstraal, H. (1965) The occurrence of Ixodes arboricola Schulze and Schlottke (Ixodoidea: Ixodidae) in Africa on northward migrating birds. Journal of Medical Entomology, 2: 37-40.
    Colbo, M., MacLeod, J. (1976) Ecological studies of ixodid ticks (Acari, Ixodidae) in Zambia. II. Ticks found on small mammals and birds. Bulletin of Entomological Research, 66: 489-500.
    Dantas-Torres, F., Oliveira-Filho, E. F., Soares, F. A. M., Souza, B. O. F., Valença, R. B. P., Sá, F. B. (2008) Ticks infesting amphibians and reptiles in Pernambuco, northeastern Brazil. Revista Brasileira de Parasitologia Veterinária, 17: 218-221.
    Dolan, M. C., Breuner, N. E., Hojgaard, A., Boegler, K. A., Hoxmeier, J. C., Replogle, A. J., Eisen, L. (2017) Transmission of the lyme disease spirochete Borrelia mayonii in relation to duration of attachment by nymphal Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology, 54: 1360-1364.
    Dryden, M. W. (2009) Flea and tick control in the 21st century: challenges and opportunities. Veterinary Dermatology, 20: 435-440.
    Estrada-Peña, A., Fuente, J. de la, Ostfeld, R. S., Cabezas-Cruz, A. (2015) Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, 5: 10361.
    Falco, R. C., Fish, D., Piesman, J. (1996) Duration of tick bites in a Lyme disease-endemic area. American Journal of Epidemiology, 143: 187-192.
    Fourie, L. J., Kok, O. B. (1992) The role of host behaviour in tick-host interactions: a domestic host-paralysis tick model. Experimental & Applied Acarology, 13: 213-225.
    Fritzen, C. M., Huang, J., Westby, K., Freye, J. D., Dunlap, B., Yabsley, M. J., Schardein, M., Dunn, J. R., Jones, T. F., Moncayo, A. C. (2011) Infection prevalences of common tick-borne pathogens in adult lone star ticks (Amblyomma americanum) and American dog ticks (Dermacentor variabilis) in Kentucky. The American Journal of Tropical Medicine and Hygiene, 85: 718-723.
    Garrison, A. R., Smith, D. R., Golden, J. W. (2019) Animal models for Crimean-Congo hemorrhagic fever human disease. Viruses, 11: 590.
    Gothe, R., Kunze, K., Hoogstraal, H. (1979) The mechanisms of pathogenicity in the tick paralysis. Journal of Medical Entomology, 16: 357-369.
    Graves, S. R., Stenos, J. (2017) Tick-borne infectious diseases in Australia. The Medical Journal of Australia, 206: 320-324.
    Guglielmone, A. A., Robbins, R. G., Apanaskevich, D. A., Petney, T. N., Estrada-Peña, A., Horak, I. G. (2014) The Hard Ticks of the World. Springer, Netherlands.
    Guglielmone, A. A., Robbins, R. G. (2018) Hard Ticks Parasitizing Humans. Springer, Switzerland.
    Hoogstraal, H., Kaiser, M. N. (1961) Ticks from European-Asiatic birds migrating through Egypt into Africa. Science, 133: 277-278.
    Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Gaber, S., Guindy, E. (1961) Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia. Bulletin of the World Health Organization, 24: 197-212.
    Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Guindy, E., Gaber, S. (1963) Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa, 1959-61. Bulletin of the World Health Organization, 28: 235-262.
    Hoogstraal, H., Traylor, M. A., Gaber, S., Malakatis, G., Guindy, E., Helmy, I. (1964) Ticks (Ixodidae) on migrating birds in Egypt, spring and fall 1962. Bulletin of the World Health Organization, 30: 355-367.
    Hoogstraal, H. (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. Journal of Medical Entomology, 15: 307-417.
    Ishigaki, Y., Nakamura, Y., Oikawa, Y., Yano, Y., Kuwabata, S., Nakagawa, H., Tomosugi, N., Takegami, T. (2012) Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. Public Library of Science ONE, 7: e32676.
    Johnson, T. L., Graham, C. B., Maes, S. E., Hojgaard, A., Fleshman, A., Boegler, K. A., Delory, M. J., Slater, K. S., Karpathy, S. E., Bjork, J. K., Neitzel, D. F., Schiffman, E. K., Eisen, R. J. (2018) Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks and Tick-Borne Diseases, 9: 1499-1507.
    Lee, J. H., Park, H. S., Jung, K. D., Jang, W. J., Koh, S. E., Kang, S. S., Lee, I. Y., Lee, W. J., Kim, B. J., Kook, Y. H., Park, K. H., Lee, S. H. (2003) Identification of the spotted fever group rickettsiae detected from Haemaphysalis longicornis in Korea. Microbiology and Immunology, 47: 301-304.
    Madder, M., Thys, E., Achi, L., Touré, A., De Deken, R. (2011) Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa. Experimental & Applied Acarology, 53: 139-145.
    Magnarelli, L. A. (2009) Global importance of ticks and associated infectious disease agents. Clinical Microbiology Newsletter, 31: 33-37.
    Miraballes, C., Riet-Correa, F. (2018) A review of the history of research and control of Rhipicephalus (Boophilus) microplus, babesiosis and anaplasmosis in Uruguay. Experimental & Applied Acarology, 75: 383-398.
    Moore, T. C., Pulscher, L. A., Caddell, L., Michael E. von Fricken, Anderson, B. D., Gonchigoo, B., Gray, G. C. (2018) Evidence for transovarial transmission of tick-borne rickettsiae circulating in northern Mongolia. Public Library of Science Neglected Tropical Diseases, 12: e0006696.
    Morand, S., Chaisiri, K., Kritiyakan, A., Kumlert, R. (2020) Disease ecology of rickettsial species: A data science approach. Tropical Medicine and Infectious Disease, 5: 64.
    Newman, M. E. J. (2003) The structure and function of complex networks. Society for Industrial and Applied Mathematics Review, 45: 167-256.
    Nuttall, G. H. F. (1905) Ticks and tick-transmitted diseases. Transactions of the Epidemiological Society of London, 24: 12-32.
    Nuttall, P. A. (1999) Pathogen-tick-host interactions: Borrelia burgdorferi and TBE virus. Zentralblatt fur Bakteriologie, 289: 492-505.
    Parola, P., Raoult, D. (2001) Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clinical Infectious Diseases, 32: 897-928.
    Pilosof, S., Morand, S., Krasnov, B. R., Nunn, C. L. (2015) Potential parasite transmission in multi-host networks based on parasite sharing. Public Library of Science ONE, 10: e0117909.
    Poulsen, A., Conroy, C., Foley, P., Ott-Conn, C., Roy, A., Brown, R., Foley, J. (2015) Ectoparasites of Microtus californicus and possible emergence of an exotic Ixodes species tick in California. Journal of Medical Entomology, 52: 1060-1066.
    Roselli, M. A., Cady, S. M., Lao, S., Noden, B. H., Loss, S. R. (2020) Variation in tick load among bird body parts: implications for studying the role of birds in the ecology and epidemiology of tick-borne diseases. Journal of Medical Entomology, 57: 845-851.
    Rosendale, A. J., Dunlevy, M. E., Fieler, A. M., Farrow, D. W., Davies, B., Benoit, J. B. (2017) Dehydration and starvation yield energetic consequences that affect survival of the American dog tick. Journal of Insect Physiology, 101: 39-46.
    Rosendale, A. J., Dunlevy, M. E., McCue, M. D., Benoit, J. B. (2019) Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Molecular Ecology, 28: 49-65.
    Russo, A. G., Kelly, A. G., Enosi Tuipulotu, D., Tanaka, M. M., White, P. A. (2019) Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evolution, 5: vez010.
    Silatsa, B. A., Simo, G., Githaka, N., Mwaura, S., Kamga, R. M., Oumarou, F., Keambou, C., Bishop, R. P., Djikeng, A., Kuiate, J. R., Njiokou, F., Pelle, R. (2019) A comprehensive survey of the prevalence and spatial distribution of ticks infesting cattle in different agro-ecological zones of Cameroon. Parasites & Vectors, 12: 489.
    Sonenshine, D. E., Mather, T. N. (1994) Ecological dynamics of tick-borne zoonoses. Oxford University Press, New York.
    Sonenshine, D. E., Roe, R. M. (2014) Biology of ticks. Oxford University Press, New York.
    Sood, S. K., Salzman, M. B., Johnson, B. J. B., Happ, C. M., Feig, K., Carmody, L., Rubin, L. G., Hilton, E., Piesman, J. (1997) Duration of tick attachment as a predictor of the risk of Lyme disease in an area in which Lyme disease is endemic. The Journal of Infectious Diseases, 175: 996-999.
    Sparagano, O., George, D., Giangaspero, A., Špitalská, E. (2015) Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens. Veterinary Parasitology, 213: 61-66.
    Stanley, H. M., Ford, S. L., Snellgrove, A. N., Hartzer, K., Smith, E. B., Krapiunaya, I., Levin, M. L. (2020) The ability of the invasive Asian Longhorned Tick Haemaphysalis longicornis (Acari: Ixodidae) to acquire and transmit Rickettsia rickettsii (Rickettsiales: Rickettsiaceae), the agent of Rocky Mountain spotted fever, under laboratory conditions. Journal of Medical Entomology, 57: 1635-1639.
    Waladde, S. M., Rice, M. J. (1982) Physiology of ticks: the sensory basis of tick feeding behaviour. Pergamon Press, Oxford. pp. 71-118.
    Wang, H., Hails, R. S., Cui, W. W., Nuttall, P. A. (2001) Feeding aggregation of the tick Rhipicephalus appendiculatus (Ixodidae): benefits and costs in the contest with host responses. Parasitology, 123: 447-453.
    Zanzani, S. A., Rimoldi, S. G., Manfredi, M., Grande, R., Gazzonis, A. L., Merli, S., Olivieri, E., Giacomet, V., Antinori, S., Cislaghi, G., Bestetti, G., Nan, K., Sala, V., Gismondo, M. R., Atzori, C., De Faveri, E. (2019) Lyme borreliosis incidence in Lombardy, Italy (2000-2015): spatiotemporal analysis and environmental risk factors. Ticks and Tick-borne Diseases, 10: 101257.

    下載圖示
    QR CODE