簡易檢索 / 詳目顯示

研究生: 林明憲
Ming-Hsien Lin
論文名稱: 電化學蝕刻技術應用於微懸浮結構之研製
Fabrication of the micro free standing structure by electrochemical etching
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 99
中文關鍵詞: 微光機電系統感應耦合電漿離子蝕刻電化學蝕刻靜電式微致動器
英文關鍵詞: Micro Electro Mechanical System (MEMS), Inductively coupled plasma reactive ion etching (ICP-RIE), Electrochemical etching (ECE), Micro-electrostatic actuator
論文種類: 學術論文
相關次數: 點閱:288下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微光機電系統技術中,製作高深寬比結構為其一大特色,其中以蝕刻技術最為被廣泛使用。非等向性濕式蝕刻設備雖較為廉價且易取得,但其對單晶矽之蝕刻形貌會受晶格方向影響,而屬於乾式蝕刻之感應耦合電漿離子蝕刻(ICP-RIE)技術,雖然有極佳的高深寬比矽微加工能力,但此系統的價格相當昂貴(約1200~2000 萬/台)且加工成本極高,一般學術單位取得不易。
    根據上述,本研究將發展低成本之電化學蝕刻(ECE)技術,應用於具高深寬比矽微結構之製作,以取代高成本感應耦合電漿離子蝕刻(ICP-RIE)在微機電技術領域之運用。由實驗結果顯示,本研究已順利自行開發電化學蝕刻高深寬比孔洞所需之設備,並利用此設備得到最佳之製程參數,蝕刻所得結構之深寬比超過40 以上,除此之外,並在蝕刻液中添加自行開發之添加劑,使孔洞側壁結構具更佳之粗糙度,其有非常顯著的效果。最後透過製程參數的調變,達到結構側向蝕刻以製作懸浮結構之目的,進而應用於靜電式微致動器之製作。

    關鍵詞:微光機電系統、感應耦合電漿離子蝕刻、電化學蝕刻、靜電式微致動器

    Etching process is one of the key technologies for fabricating high aspect structures in Micro Electro Mechanical System (MEMS). Equipment of anisotropic wet etching is lower cost than other etching technologies but the appearance of the etching result controlled by crystal direction for silicon wafer. Though inductively coupled plasma reactive ion etching (ICP-RIE) process can get extremely great high aspect silicon strictures but it’s very high cost process.
    The project will develop the technology of low-cost electrochemical etching (ECE) for the fabrication of silicon micro- structure with high aspect ratio. The technique will take the place of ICP-RIE process. The results show we have set up photo-assisted electro- chemical etching apparatus in this study. we also find optimal process conditions with the apparatus and fabrication micro-structure with aspect ratio over 40. Moreover, a novel additive has been used to improve the structure roughness and its effect is very significant. The side etching will be occurred by adjusting process parameters and the free-standing beams can be achieved with only one mask. Finally, the micro-electrostatic actuator can be getting.

    Key word: Micro Electro Mechanical System (MEMS), Inductively coupled plasma reactive ion etching (ICP-RIE), Electrochemical etching (ECE), Micro-electrostatic actuator

    中文摘要 I 英文摘要 II 總目錄 III 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1 微機電系統簡介 1 1.2 電化學蝕刻簡介 4 1.3 論文架構 7 第二章 文獻回顧與理論探討 8 2.1 高深寬比矽基微細加工 8 2.1.1 濕式矽蝕刻技術 8 2.1.2 乾式矽蝕刻技術 10 2.2 電化學蝕刻之發展 16 2.3 矽在電解液中的電流-電壓( I-V )特性 19 2.4 電化學蝕刻成形機制多孔矽形成模型 22 2.4.1 矽表面溶解 22 2.4.2 多孔矽形成模型 22 2.5 電化學空機制 34 2.6 研究動機 35 第三章 實驗方法與規劃 37 3.1 實驗規劃 37 3.1.1 電化學蝕刻之前製程 37 3.2 實驗裝置 45 3.3 實驗設備與量測 47 第四章 初步實驗結果與討論 55 4.1 KOH預蝕刻的影響 55 4.2 界面活性劑 58 4.2.1 預蝕刻之界面活性劑 58 4.2.2 電化學蝕刻之界面活性劑對蝕刻效果的影響 59 4.2.2 電化學蝕刻之界面活性劑(MA)特性探討 60 4.3 電流密度與蝕刻時間的影響 67 4.4 微懸浮結構之製作 79 4.5 微致動器之製作 81 4.5.1 靜電式微致動器光罩設計 81 4.5.2 靜電式微致動器製作 86 4.5.3 電性驅動 91 第五章 結論與未來展望 94 參考資料 97

    1. http://www.zyvex.com/nanotech/feynman.html
    2. 楊啟榮等人, 微機電系統技術與應用, 精密儀器發展中心, 第四章, pp.142 (2003).
    3. V. Lehmann and H Fll, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon”, J. Eletrochem. Soc., 137, pp.653-658 (1990).
    4. V. Lehmann and U. Grning, “The limits of macropore array fabrication”, Thin Solid Films, 297, pp.13-17 (1997).
    5. V. Lehmann, “The physics of macropore formation in low-doped n-type silicon”, J. Eletrochem. Soc., 140, pp.2836-2843 (1993).
    6. V. Lehmann, “Porous silicon formation and other photo-electrochemical effects at silicon electrodes anodized in hydrofluoric acid”, Appl. Surf. Sci., 106, pp.402-405 (1996).
    7. V. Lehmann, “Porous silicon-a new material for MEMS”, Proceedings of 1996 MEMS, pp.1-6 (1996).
    8. M. D. B. Charlton, H. W. Lau and G. J. Parker, “High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures”, Microengineering Appl. In Optoelectronics, pp.1-9 (1996).
    9. H.R. Robbins and B. Schwartz, “Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2”, J. Electrochem. Soc., 106 (6), pp. 505-508 (1959).
    10.H.R. Robbins and B. Schwartz, “Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2”, J. Electrochem. Soc., 107 (2), pp. 108-111 (1960).
    11.B. Schwartz and H. R. Robbins, “Chemical etching of silicon-III. A temperature study in the acid system”, J. Electrochem. Soc., 108 (4), pp. 365-372, (1961).
    12.Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, 86 (8), pp.1536-1551 (1998).
    13.M. Elwenspoek, “The form of etch rate minima in wet chemical anisotropic etching of silicon”, Journal of Micromechanical and Microengineering, 6, pp.405-409 (1996).
    14.B. Schwartz and H. R. Robbins, “Chemical etching of silicon-IV. Etching technology”, J. Electrochem. Soc., 123 (12), pp.1903-1909 (1976).
    15.A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, “Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH”, J. Electrochem. Soc. Solid State, 114 (9), pp.970-973 (1997).
    16.L. Walter, “Silicon microstructuring technology”, Materials science and engineering, R17, pp.1-55 (1996).
    17.D. B. Lee, “Anisotropic etching of silicon”, Journal of Applied physics, 40 (11), pp. 4569-4574, (1969).
    18.P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc., 140 (4), pp.1080-1084 (1993).
    19.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc., 137 (11), pp.3612-3626(1990).
    20.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”, J. Electrochem. Soc., 137 (11), pp.3626-3632 (1990).
    21.D. R. Ciarlo, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp.1-4 (1987).
    22.O. Powell and H B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon”, J. Micromech. Microeng., 11, pp.217-220 (2001).
    23.鍾震桂, 盧慧娟, 趙天行, 第三屆奈米工程暨微系統技術研討會, 3-83 (1999).
    24.F. Lrmer, A. Schilp, German Patent DE4241045C1, USA patents 4855017 and 4784720.
    25.M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE process”, Sensors and Actuators A, 74, pp.13-17 (1999).
    26.C. K. Chung, H. C. Lu, and T. H. Jaw, HARMST’99, 22 (1999).
    27.Uhir, “Electrolytic shapping of germanium and silicon”, J. Bell System Tech., 35, pp.333-547 (1956)
    28.Axel Richter, “Current-induced Light-Emission From a Porous Silicon Device”, IEEE electron device letter, 12 (12) pp.691-692 (1991).
    29.S. Izuo, H. Ohji, and P. J. French, “A novel electrochemical etching technique for n-type silicon”, Sensors and Actuators A, 97, pp.720-724 (2002).
    30.G. Barillaro, A. Nannini, and M. Piotto, “Electrochemical etching in HF solution for silicon micromachining”, Sensors and Actuators A, 102, pp.195-201 (2002).
    31.H. Ohji, P.J. French, K. Tsutsumi, “Fabrication of mechanical in p-type silicon using electrochemical etching”, Sensors and Actuators, 82, pp.254-258 (2000).
    32.H. Ohji, P.J. Trimp, P.J. French, “Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid”, Sensors and Actuators, 73, pp.95-100 (1999).
    33.R. L. Smith and S. D. Collins, “Porous silicon formation mechanisma”, J. Appl. Phys., 71 (8), R1 (1992).
    34.M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon”, J. Cryst. Growth, 73, pp.622-636 (1985).
    35.M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis and J. D. Benjamin, “Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett., 46 (1), pp.86-88 (1985).
    36.X. G. Zhang, S. D. Collins and R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution”, J. Electrochem. Soc., 136, pp.1561-1565 (1989).
    37.X. G. Zhang, “Mechanism of pore formation on n-type silicon”, J. Electrochem. Soc., 138, pp.3750-3756 (1991).
    38.T. Unagami , “Formation mechanism of porous silicon layer by anodization in HF solution”, J. Electrochem. Soc., 127, pp.476-483 (1980).
    39.R. L. Smith, S. F. Chuang and S. D. Collins, “A theoretical model of the formation morphologies of porous silicon”, J. Electro. Mater., 17 (6), pp.533-541 (1988).
    40.C. S. Solanki, R. R. Bilyalov, J. Poortmans, J. P. Celis, J. Niji and R. Mertens, “Self-standing porous silicon films by one-step anodizing”, J. Electrochem. Soc., 151 (5), pp.307-314 (2004).

    QR CODE