研究生: |
楊俊彥 Yang, Chun-Yen |
---|---|
論文名稱: |
阿拉伯芥核蛋白CIA2和CIL調控葉綠體發育機制研究 Arabidopsis Nuclear Proteins CIA2 and CIL Regulate Chloroplast Development |
指導教授: |
孫智雯
Sun, Chih-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | 阿拉伯芥 、CHLOROPLAST IMPORT APPARATUS 2 (CIA2) 、CIA2-LIKE (CIL) 、CCT 結構 、葉綠體發育 、細胞核導引訊息 、酵母菌雙雜交 、植物開花調節 |
英文關鍵詞: | Arabidopsis, CHLOROPLAST IMPORT APPARATUS 2 (CIA2), CIA2-LIKE (CIL), CCT motif, chloroplast development, nuclear localization signal, yeast two-hybrid, flowering regulation |
DOI URL: | http://doi.org/10.6345/NTNU202001050 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CHLOROPLAST IMPORT APPARATUS 2 (CIA2)與CIA2-LIKE (CIL)隸屬於一羣植物特有、會參與開花時間或蓋日韻律調節的CCT [CONSTANS (CO), CO-LIKE (COL), TIMING OF CAB EXPRESSION1 (TOC1)] 轉錄因子。有別於其他CCT蛋白,CIA2會提高一些葉綠體蛋白合成基因的表現量,進而確保葉綠體的正常發育。
CIL與CIA2的胺基酸序列具有65%的相似性;CIL在葉子和花苞中表現,其表現型態與CIA2相似,這表明CIL和CIA2在阿拉伯芥中是同源的。CIL在cia2突變株中表現量增加,而cia2 /cil雙突變株的葉色比cia2突變株更為淺綠。對cia2 /cil雙突變株的微陣列分析(Microarray analysis) 顯示,與葉綠體發育有關的細胞核表現基因,包括與光合作用和葉綠素生合成相關的基因,表現量明顯降低,顯示CIA2和CIL共同調節了GOLDEN2-LIKE 1和葉綠體發育相關基因的表現。微觀結構觀察(Microstructure observation) 顯示10天齡的cia2 /cil雙突變株具有特定的發育異常。
CIA2是細胞核轉錄蛋白,包含位於氨基酸62-65和291-308的兩個細胞核導引訊息(nuclear localization signal, NLS)。 CIL也是細胞核轉錄蛋白,其NLS位於胺基酸 47-50。 CIA2和CIL的CCT結構不具有核定位信號功能。酵母雙雜交(yeast two-hybrid, Y2H)篩選確認了與CIA2 相互作用的蛋白。除了自身和CIL外,還確認了諸如CO、NUCLEAR FACTOR Y B1 (NF-YB1)、NF-YC1、NF-YC9 和ABSCISIC ACID-INSENSITIVE 3 等蛋白與葉綠體功能和開花時間的調節有關。Y2H進一步確認CIA2和CIL的N 和C 端區域對於與其他蛋白的交互作用很重要。儘管CIA2 和CIL 的CCT 結構是兩個蛋白質之間的主要相互作用片段,但CIA2和CIL N 端的CIA2 and CIL conserved 1 (CC1) 結構使上述CIA2、CIL和開花時間調節蛋白之間能夠交互作用。
本研究中顯示阿拉伯芥CIA2 和CIL 與CO 和NF-Y複合體(complex) 交互作用,並參與CO相關的開花機制調控。CIA2 和CIL 的N端CC1結構與CO 和NF-Ys (B1、C1和C9) 相互作用形成更高階的複合體,並且CC1 結構中的胺基酸序列與NF-Ys中NF-YA1 結構的序列相似。其中,NF-YAs 蛋白是利用NF-YA1結構與NF-YB / NF-YC複合體交互作用。最後,本研究的結果顯示CIA2 和CIL 參與葉綠體發育和CO 相關開花機制的調控。
Chloroplast import apparatus 2 (CIA2) and CIA2-like (CIL) are classified to plant-specific, CCT [CONSTANS (CO), CO-LIKE (COL), TIMING OF CAB EXPRESSION1 (TOC1)] motif-containing transcription factors involving in regulation of flowering time or circadian rhythm. In contrast to other CCT proteins, CIA2 is able to increase the expression yields of genes encoding chloroplast proteins, and therefore to ensure the proper development of chloroplast.
CIL shares 65% similarity of amino acid sequence with CIA2; CIL is expressed in leaves and young flower buds, and its expression pattern is similar to that of CIA2, suggesting that CIL and CIA2 are homologous in Arabidopsis. CIL is overexpressed in cia2 plants, and the pale-green phenotype of cia2/cil is more severe than that of cia2. Microarray analysis of cia2/cil double mutants revealed evidently decreased expression of nuclear genes involved in chloroplast development, including genes associated with photosynthesis and chlorophyll biosynthesis, indicating that CIA2 and CIL co-regulate the expression of GLK1 and chloroplast development-related genes. Microstructure observations revealed a specific developmental abnormality of chloroplasts in the 10-day-old cia2/cil double mutants.
CIA2 is a nuclear protein containing two nuclear localization signals (NLSs) located at amino acid (aa) positions 62-65 and 291-308. CIL is also a nuclear protein, with an NLS located at 47-50 aa. The CCT motifs of CIA2 and CIL do not function as an NLS. CIA2-interacting candidates were identified by using yeast two-hybrid (Y2H) screening. In addition to CIA2 and CIL, CIA2-interacting proteins identified from Y2H such as CO, NUCLEAR FACTOR Y B1 (NF-YB1), NF-YC1, NF-YC9, and ABSCISIC ACID-INSENSITIVE 3 were speculated to be involved in the regulation of chloroplast function and flowering time. Y2H experiments revealed that the N- and C-terminal regions of CIA2 and CIL are important for interactions with other candidate proteins. Although the CCT motifs of CIA2 and CIL are the major interacting fragments between the two protein, the N-terminal CIA2 and CIL conserved 1 (CC1) motif enables the interactions among CIA2, CIL, and the flowering time regulatory proteins mentioned above.
This study proposes that the Arabidopsis CIA2 and CIL interact with the CO and NF-Y complex and participate in CO-related flowering regulation. Moreover, the N-terminal CC1 motifs of CIA2 and CIL interact with CO and NF-Ys (B1, C1, and C9) to form a high-order complex, and the residues in the CC1 motif are similar to those in the NF-YA1 subdomain of NF-YAs, which interact with the NF-YB/NF-YC complexes. Finally, the results of this study suggest that CIA2 and CIL co-regulate the expression of genes involved in chloroplast development and CO-related flowering regulation.
References
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052–1056
Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22: 1425–1440
Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880–883
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657
Altschul SF, Madden TL, Scha¨ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402
Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustün S, Melzer M, Petersen K, Lein W, Börnke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22: 1498–1515
Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249: 2175–2181
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141: 391–396
Baginsky S and Gruissem W (2006) Arabidopsis thaliana proteomics: From proteome to genome. J Exp Bot 57: 1485–1491
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue): W202–W208
Borden KLB (1998) RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Bioche.m Cell Biol. 76: 351–358
Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell 14 suppl S18–S31
Brugie`re S, Kowalski S, Ferro M, Seigneurin-Berny D, Miras S, Salvi D, Ravanel S, d’He´ rin P, Garin J, Bourguignon J, Joyard J, Rolland N (2004) The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65: 1693–1707
Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt III BF (2014) A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26: 1009–1017
Carrington JC, Freed DD, Leinicke AJ (1991) Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3: 953–962
Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159
Clough SJ, Bent AF (1998) Floral dip: a simplifiedmethod for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743
Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, O’Sullivan DM (2012) Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS One 7: e45307
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030–1033
Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE (2012) Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell 24: 893–914
Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognár L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74–77
Edgar RC (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 (5): 1792–97
Edgar RC (2004b) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5 (1): 113
Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15–45
Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31: 713–727
Galletta BJ, Rusan NM (2015) A yeast two-hybrid approach for probing protein-protein interactions at the centrosome. Methods Cell Biol 129: 251–277
Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19: 460–470
Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN (2011) A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol 157: 1733–1745
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 109: 3167–3172
Gil KE, Park MJ, Lee HJ, Park YJ, Han SH, Kwon YJ, Seo PJ, Jung JH and Park CM (2017) Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. Plant J 89(1) 128–140
Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt III BF, Mantovani R (2017) CONSTANS imparts DNA sequence specificity to the histone fold NF-YB/NF-YC dimer. Plant Cell 29: 1516–1532
Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S (2016) MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis. PLOS GENET 12: e1005959
Green R, Tobin E (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96: 4176–4179
Gusmaroli G, Tonelli C, Mantovani R (2001) Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsis thaliana. Gene 264, 173–185
Gusmaroli G, Tonelli C, Mantovani R (2002) Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283: 41–48
Hall LN, Rossini L, Cribb L, Langdale JA (1998) GOLDEN2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10: 925–936
Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16: 4041–4048
Hassidim M, Harir Y, Yakir E, Kron I, Green RM (2009) Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230: 481–491
Hayama R, Sarid-Krebs L, Richter R, Fernández V, Jang S, Coupland G (2017) PSEUDO RESPONSE REGULATORs stabilize CONSTANS proteinto promote flowering in response to day length. EMBO J 36: 904–918
He C, Saedler H (2005) Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA 102: 5779–5784
Hideg E, Barta C, Kalai T, Vass M, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescence sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43: 1154–1164
Hong J, Lee H, Lee J, Kim H, Ryu H (2019) ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. Plant Physiol Biochem 139: 207–214
Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH (2014) SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics 30: 3356–3364
Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, et al (2015) Interactions of OsMADS1 with floral homeotic genes in rice flower development. Mol Plant 8: 1366–1384
Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Más P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336: 75–79
Hunter C, Siebert K, Downes D, Wong K, Kreutzberger S, Fraser J, Clarke D, Hynes M, Davis M, Todd R (2014) Multiple nuclear localization signals mediate nuclear localization of the GATA transcription factor AreA. Eukaryot Cell 13: 527–538
Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol 40: 733–742
Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Kessler F, Schnell D (2009) Chloroplast biogenesis: Diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21: 494–500
Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2: 741–751
Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17: 1050–1054
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907
Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509
Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54: 605–627
Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16: 21–32
Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522–525
Kindgren P, Strand Å (2015) Chloroplast transcription, untangling the Gordian knot. New Phytol 206: 889–891
Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118: 637–650
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549
Kumimoto RW, Zhang Y, Siefers N, Holt BF III (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63: 379–391
Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21: 143–155
Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51: 925–948
Lazaro A, Mouriz A, Piñeiro M, Jarillo JA (2015) Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27: 2437–2454
Lazaro A, Valverde F, Piñeiro M, Jarillo JA (2012) The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24: 982–999
Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19: 47–56
Li M, Hensel G, Mascher M, Melzer M, Budhagatapalli N, Rutten T, Himmelbach A, Beier S, Korzun V, Kumlehn J, Boerner T, Stein N (2019) Leaf variegation and impaired chloroplast development caused by a truncated CCT domain gene in albostrians barley. Plant Cell 31: 1430–1445
Liao JC, Hsieh WY, Tseng CC, Hsieh MH (2016) Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. Photosynthesis Res 127: 151–159
Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148: 350–382
Liu B, Zuo Z, Liu H, Liu X, Lin C (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25: 1029–1034
Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292–306
Liu TL, Newton L, Liu MJ, Shiu SH, Farré EM (2016) A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant Physiol 170: 528–539
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402–408
Lv W, Lin B, Zhang M, Hua X (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156: 1921–1933
Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5: 484–495
Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158: 156–189
Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43: 58–69
Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27
Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics 3: 675–691
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251
Masaki T, Tsukagoshi H, Mitsui N, Nishii T, Hattori T, Morikami A, Nakamura K (2005) Activation tagging of a gene for a protein with novel class of CCT-domain activates expression of a subset of sugar-inducible genes in Arabidopsis thaliana. Plant J 43: 142–152
Matsushika A, Imamura A, Yamashino T, Mizuno T (2002a) Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol 43: 833–843
Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T (2002b) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana. II. Characterization with CCA1-overexpressing plants. Plant Cell Physiol 43: 118–122
Melonek J, Oetke S, Krupinska K (2016) Multifunctionality of plastid nucleoids as revealed by proteome analyses. Biochim Biophys Acta 1864: 1016–1038
Miller JH (1972) Experiments in Molecular Genetics: Assay of β-Galactosidase, p. 352-355. CSH Laboratory Press, Cold Spring Harbor, NY
Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of monodehydroascorbate radicals in spinach thylakoids. Plant Cell Physiol 35: 539–549
Morgan MJ, Lehmann M, Schwarzla¨nder M, Baxter CJ, SienkiewiczPorzucek A, Williams TCR, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, et al (2008) Decrease in manganese superoxide dismutase leads to reduced root growth and affects TCA cycle flux and mitochondrial redox homeostasis. Plant Physiol 147: 101–114
Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 suppl S111–S130
Murakami M, Yamashino T, Mizuno T (2004) Characterization of circadian-associated APRR3 Pseudo-Response Regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 45: 645–650
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum 15: 473–497
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20: 3148–3162
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22: 594–605
Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci USA 109: 17123–17128
Nambara E, Keith K, McCourt P, Naito S (1994) Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant & Cell Physiol 35: 509–513
Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104: 16450–16455
Ogawa K, Kanematsu S, Takabe K, Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: Detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36: 565–573
Ooms J, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol 102: 1185–1191
Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96: 6553–6557
Osella AV, Mengarelli DA, Mateos J, Dong SC, Yanovsky MJ, Balazadeh S, Valle EM, Zanor MI (2018) FITNESS, a CCT domain‐containing protein, deregulates reactive oxygen species levels and leads to fine‐tuning tradeoffs between reproductive success and defence responses in Arabidopsis. Plant Cell Environ 41: 2328–2341
Paila YD, Richardson LG, Schnell DJ (2015) New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 427: 1038–1060
Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171: 2294–2316
Para A, Farre EM, Imaizumi T, Pruneda-Paz JL, Harmon FG, Kay SA (2007) PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19: 3462–3473
Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9: 1265–1277
Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–1582
Peck SC (2005) Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol 138: 591–599
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5: 114–133
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF III, Mantovani R (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24: 4777–4792
Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18: 176– 197
Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18: 186–194
Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857
Putterill J, Ledger S, Lee K, Robson F, Murphy G, Coupland G (1997) The flowering time gene CONSTANS and homologue CONSTANS LIKE 1 (Accession no. Y10555 and Y10556) exist as a tandem repeat on chromosome 5 of Arabidopsis (PGR97–077). Plant Physiol 114: 396
Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134: 1718–1732
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR et al. (2000) Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes. Science 290: 2105–2110
Robson F, Costa MMR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28: 619–631
Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J 29: 183–191
Salomé PA, To JPC, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin independent roles in the control of circadian period. Plant Cell 18: 55–69
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré I, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229
Schweer J, Tu¨ rkeri H, Kolpack A, Link G (2010) Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription: recent lessons from Arabidopsis thaliana. Eur J Cell Biol 89: 940–946
Shi H, Ye T, Zhong B, Liu X, Jin R, Chan Z (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol 203: 554–567
Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173: 5–15
Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14: R60
Sng NJ, Paul AL, Ferl RJ (2018a) Phenotypic characterization of an Arabidopsis T-DNA insertion lineSALK_063500. Data in Brief 18: 913–919
Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL (2018b) A member of the CONSTANS–like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AoB Plants 11: ply075
Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336: 1045–1049
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA 111: 17672–17677
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66: 441–464
Steiner S, Schröter Y, Pfalz J, Pfannschmidt T (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157: 1043–1055
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768–771
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116–1120
Sun CW, Chen LJ, Lin LC, Li HM (2001) Leaf-specific up-regulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. Plant Cell 13: 2053-2061
Sun CW, Huang YC, Chang HY (2009) CIA2 coordinatedly up-regulates protein import and synthesis in leaf chloroplasts. Plant Physiol 150: 879–888
Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar AH (2012) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41: D1185–D1191
Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. J Biol Chem 269: 13244–13253
Tiwari S, Shen Y, Chang H, Hou Y, Harris A, Ma S, McPartland M, Hymus G, Adam L, Marion C, Belachew A, Repetti P, Reuber T, Ratcliffe O (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187: 57–66
Torok M, Elkin LD (2000) Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67: 63–71
Tripathi P, Carvallo M, Hamilton EE, Preuss S, Kay SA (2017) Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proc Natl Acad Sci USA 114: 172–177
Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031–1034
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003–1006
Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12: 239–244
Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein opaque-2. Plant Cell 4: 1213–1227
Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56: 505–516
Wang W, Yang D, Feldmann KA (2011) EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 62: 1077–1088
Wang CQ, Guthrie C, Sarmast MK, Dehesh K (2014) BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell 26: 3589–3602
Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu SH (2018) Factors influencing gene family size variation among related species in a plant family, Solanaceae. Genome Biol Evol 10: 2596–2613
Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, Wu SH (2011) LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock. Plant Cell 23: 486–498
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, et al (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143: 1590–1600
Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in a cellautonomous manner. Plant J 56: 432–444
Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21: 1109–1128
Wenkel S, Turck F, Singer K, Gissot L, Gourrierec JL, Samach A, Couplanda G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971–2984
White DWR (2006) PEAPOD regulates lamina size and curvature in Arabidopsis. Proc Natl Acad Sci USA 103: 13238–13243
Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96: 15336–15341
Xing YY, Fikes JD, Guarente L (1993) Mutations in Yeast Hap2/Hap3 define a hybrid CCAAT box-binding domain. EMBO J 12: 4647–4655
Xing YY, Zhang SU, Olesen JT, Rich A, Guarente L (1994) Subunit interaction in the CCAAT-binding heteromeric CONSTANS and the HAP complex is mediated by a very short alpha-helix in HAP2. Proc Natl Acad Sci USA 91: 3009–3013
Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z, Balota M, Harich K, Zhang PYH, Zhao B (2012) Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS ONE 7: e47399
Xu Y, Gan ES, Ito T (2013) The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5. Plant Signal Behav 8: 1–3
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473–2483
Yu QB, Huang C, Yang ZN (2014) Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Front Plant Sci 5: 316
Zhang S, Zhang JS, Zhao J, He C (2015) Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta 241: 387–402
Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G (2017) The Arabidopsis thaliana nuclear factor Y transcription factors. Front Plant Sci 7: 2045
Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21: 841–847