簡易檢索 / 詳目顯示

研究生: 楊玉珠
Yang, Yu-Chu
論文名稱: 一價銠金屬催化α-酮酯進行具鏡像選擇性的烯丙基化反應:合成4’-芳基-2’,3’-二去氧核苷類似物
Rhodium(I)-Catalyzed Enantioselective Allylation of α-Ketoesters: Synthesis of 4’-Aryl-2’,3’-dideoxynucleoside Analogue
指導教授: 吳學亮
Wu, Hsyueh-Liang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 216
中文關鍵詞: 一價銠金屬催化掌性雙環[2.2.1]雙烯配基烯丙基硼酸頻哪醇酯試劑α-酮酯掌性三級高烯丙醇鏡像選擇性不對稱加成反應核苷類似物
英文關鍵詞: Rhodium(I)-catalyzed, bicyclo[2.2.1]diene ligands, allyl boronic acid pinacol esters, α-ketoesters, chiral homoallylic alcohols, enantioselectivity, asymmetric addition, nucleoside analogue
DOI URL: http://doi.org/10.6345/NTNU202001142
論文種類: 學術論文
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文敘述利用一價銠金屬及掌性雙環[2.2.1]雙烯配基L8k配位形成之催化劑催化不同的烯丙基硼酸頻哪醇酯試劑14對α-酮酯7進行不對稱1,2-加成反應,以最優化條件進行反應,成功合成出一系列的掌性三級高烯丙醇2和71,產率高達>99%,鏡像超越值高達98%,非鏡像異構物比例高達>20:1。
    此外,以加成產物2qa經5個步驟可得到掌性內酯ent-88,總產率為85%,再利用已知的方法能夠合成出具有抗HIV及抗癌活性的核苷類似物。

    This thesis describes an asymmetric 1,2-addition of allyl boronic acid pinacol esters 14 to α-ketoesters 7, catalyzed by a chiral Rh(I)-catalyst, which in situ generated from [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1] heptadiene ligand L8k. Under optimal reaction conditions, the desired chiral tertiary homoallylic alcohols 2 and 71 were generated in up to >99% yield with up to 98% ee and up to >20:1 diastereomeric ratio.
    In addition, the homoallylic alcohol 2qa was converted, in 5 steps with 85% overall yields, to lactone ent-88 that is the crucial precursor for anti-HIV and anti-cancer nucleoside analogues.

    謝辭 i 摘要 iii Abstract v 第一章 緒論 1 第二章 文獻回顧及研究動機 6 第三章 掌性雙環雙烯配基的合成 19 第四章 實驗結果與討論 一、添加劑效應探討 26 二、溫度效應探討 29 三、濃度效應探討 31 四、溶劑效應探討 32 五、配基效應探討 34 六、一價銠金屬催化量效應探討 36 七、最優化條件 37 八、不同酯基或醯胺基的α-酮酯(醯胺)之受質效應探討 38 九、不同芳香基、雜環及脂肪族的α-酮酯之受質效應探討 40 十、改變不同烯丙基硼酸頻哪醇酯試劑對不對稱加成反應之探討 I.以反-巴豆基硼酸頻哪醇酯作為親核試劑之加成反應探討 42 II.以順-巴豆基硼酸頻哪醇酯作為親核試劑之加成反應探討 43 III.以1-甲基烯丙基硼酸頻哪醇酯作為親核試劑之加成反應探討 45 IV.以異戊烯基硼酸頻哪醇酯作為親核試劑之加成反應探討 46 V.以2-甲基烯丙基硼酸頻哪醇酯作為親核試劑之加成反應探討 47 第五章 反應機構與絕對立體化學 一、一價銠金屬-巴豆基(Rh(I)-crotyl)之異構化 48 二、推測之反應機構 50 三、絕對立體化學之探討 52 第六章 合成應用 一、前言 57 二、文獻回顧 58 三、目標產物ent-88的合成 I.加成產物2qa之克級反應 60 II.目標產物ent-88的合成路徑 61 第七章 結論 65 第八章 實驗部分 67 分析儀器及基本實驗 67 General Procedures for the Synthesis of α-Ketoesters 91 70 General Procedures for the Synthesis of Boronic Acid Pinacol Esters 14 74 General Procedures for Rhodium-Catalyzed Asymmetric 1,2-Addition 79 General Procedures for the Synthesis of compound 78 111 General Procedures for the Synthesis of compound ent-88 113 第九章 參考文獻 116 附錄一 X-Ray單晶數據與ORTEP解析圖譜 123 附錄二 核磁共振光譜 133

    1. (a) Franks, M. E.; Macpherson, G. R.; Figg, W. D. Lancet 2004, 363, 1802–1811. (b) Moghe, V. V.; Kulkarni, U.; Parmar, U. I. Bombay Hospital Journal 2008, 50, 472–476. (c) Kelsey, F. O. J. Dent. Res. 1967, 46, 1199–1205.
    2. (a) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2794. (b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774–7854. (c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595–5698.
    3. Cravotto, G.; Giovenzana, G. B.; Palmisano, G.; Penoni, A.; Pilati, T.; Sisti, M.; Stazi, F. Tetrahedron: Asymmetry 2006, 17, 3070–3074.
    4. Huang, J.-M.; Xu, K.-C.; Loh, T.-P. Synthesis 2003, 5, 755–764.
    5. Singh, P.; Mittal, A.; Bhardwaj, A.; Kaur, S.; Kumar, S. Bioorg. Med. Chem. Lett. 2008, 18, 85–89.
    6. (a) Jõgi, A.; Paju, A.; Pehk, T.; Kailas, T.; Müürisepp, A.-M.; Lopp, M. Tetrahedron 2009, 65, 2959–2965. (b) Robbins, D. W.; Lee, K.; Silverio, D. L.; Volkov, A.; Torker, S.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 9610–9614.
    7. Ojima, I.; Miyazawa, Y.; Kumagai, M. J. Chem. Soc., Chem. Commun. 1976, 22, 927–928.
    8. Soai, K.; Ishizaki, M. J. Chem. Soc., Chem. Commun. 1984, 15, 1016–1017.
    9. Kulkarni, N. A.; Wang, S.-G.; Lee, L.-C.; Tsai, H. R.; Venkatesham, U.; Chen, K. Tetrahedron: Asymmetry 2006, 17, 336–346.
    10. Zheng, K.; Qin, B.; Liu, X.; Feng, X. J. Org. Chem. 2007, 72, 8478–8483.
    11. Cui, Y.; Li, W.; Sato, T.; Yamashita, Y.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 1193–1205.
    12. Niwa, Y.; Miyake, M.; Hayakawa, I.; Sakakura, A. Chem. Commun. 2019, 55, 3923–3926.
    13. Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 4351–4353.
    14. Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066–18069.
    15. Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem. Int. Ed. 2012, 51, 780–783.
    16. Khiar, N.; Valdivia, V.; Salvador, Á.; Chelouan, A.; Alcudia, A.; Fernández, I. Adv. Synth. Catal. 2013, 355, 1303–1307.
    17. Melcher, M.-C.; Ivšić, T.; Olagnon, C.; Tenten, C.; Lützen, A.; Strand, D. Chem. Eur. J. 2018, 24, 2344–2348.
    18. Chang, C.-A.; Uang, T.-Y.; Jian, J.-H.; Zhou, M.-Y.; Chen, M.-L.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Adv. Synth. Catal. 2018, 360, 3381–3390.
    19. Luo, Y.; Hepburn, H. B.; Chotsaeng, N.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 8309–8313.
    20. Chiang, P.-F.; Li, W.-S.; Jian, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Org. Lett. 2018, 20, 158–161.
    21. Li, W.-S.; Kuo, T.-S.; Hsieh, M.-C.; Tsai, M.-K.; Wu, P.-Y.; Wu, H.-L. Org. Lett. 2020, 22, 5675–5679.
    22. 李家瑋(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    23. 李治毅(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    24. 蔡傜竹(2018)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    25. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508–11509.
    26. Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503–2508.
    27. Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765–4773.
    28. (a) Holtz, H. D.; Stock, L. M. J. Am. Chem. Soc. 1964, 86, 5183–5188. (b) Luo, Y.; Carnell, A. J. Angew. Chem. Int. Ed. 2010, 49, 2750–2754.
    29. (a) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337. (b) Zhong, Y.-W.; Lei, X.-S.; Lin, G.-Q. Tetrahedron: Asymmetry 2002, 13, 2251–2255.
    30. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    31. Barker, T. J.; Jarvo, E. R. Org. Lett. 2009, 11, 1047–1049.
    32. (a) Boyer, P. L.; Julias, J. G.; Ambrose, Z.; Siddiqui, M. A.; Marquez, V. E.; Hughes, S. H. J. Mol. Biol. 2007, 371, 873–882. (b) Tanaka, H.; Haraguchi, K.; Kumamoto, H.; Baba, M.; Cheng, Y.-C. Antivir. Chem. Chemother. 2005, 16, 217–221. (c) Summerer, D.; Marx, A. Bioorg. Med. Chem. Lett. 2005, 15, 869–871.
    33. (a) Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Bioorg. Med. Chem. Lett. 1999, 9, 385–388. (b) Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. Bioorg. Med. Chem. Lett. 2003, 13, 3775–3777. (c) Maag, H.; Rydzewski, R. M.; McRoberts, M. J.; Crawford-Ruth, D.; Verheyden, J. P. H.; Prisbe, E. J. J. Med. Chem. 1992, 35, 1440–1451.
    34. Jõgi, A.; Paju, A.; Pehk, T.; Kailas, T.; Müürisepp, A.-M.; Kanger, T.; Lopp, M. Synthesis 2006, 18, 3031–3036.
    35. (a) Tian, D.; Li, C.; Gu, G.; Peng, H.; Zhang, X.; Tang, W. Angew. Chem. Int. Ed. 2018, 57, 7176–7180. (b) Shirai, T.; Ito, H.; Yamamoto, Y. Angew. Chem. Int. Ed. 2014, 53, 2658–2661.
    36. Zhang, J.; Liu, X.; Ma, X.; Wang, R. Chem. Commun. 2013, 49, 3300–3302.
    37. Meng, Q.; Sun, Y.; Ratovelomanana-Vidal, V.; Genêt, J. P.; Zhang, Z. J. Org. Chem. 2008, 73, 3842–3847.
    38. Allais, C.; Constantieux, T.; Rodriguez, J. Synthesis 2009, 15, 2523–2530.
    39. Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776–779.
    40. (a) Iranpoor, N.; Firouzabadi, H.; Aghapour, G.; Vaez zadeh, A. R. Tetrahedron 2002, 58, 8689–8693. (b) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036–4037.
    41. Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716–2722.
    42. (a) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc. 2009, 131, 16346–16347. (b) Niyomchon, S.; Audisio, D.; Luparia, M.; Maulide, N. Org. Lett. 2013, 15, 2318–2321.
    43. Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 8770–8773.
    44. (a) Kumar, Y.; Jaiswal, Y.; Kumar, A. J. Org. Chem. 2016, 81, 12247–12257. (b) Khan, S.; Ahmed, Q. N. Eur. J. Org. Chem. 2016, 5377–5385. (c) Xu, X.; Ding, W.; Lin, Y.; Song, Q. Org. Lett. 2015, 17, 516–519. (d) Foley, C.; Shaw, A.; Hulme, C. Org. Lett. 2017, 19, 2238–2241. (e) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152–1155. (f) Zhang, F.-H.; Wang, C.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2019, 361, 2832–2835. (g) Enders, D.; Rembiak, A.; Stöckel, B. A. Adv. Synth. Catal. 2013, 355, 1937–1942. (h) Albrecht, Ł.; Dickmeiss, G.; Weise, C. F.; Rodríguez-Escrich, C.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2012, 51, 13109–13113.
    45. (a) Selander, N.; Szabó, K. J. J. Org. Chem. 2009, 74, 5695–5698. (b) Clary, J. W.; Rettenmaier, T. J.; Snelling, R.; Bryks, W.; Banwell, J.; Wipke, W. T.; Singaram, B. J. Org. Chem. 2011, 76, 9602–9610. (c) Mao, L.; Szabó, K. J.; Marder, T. B. Org. Lett. 2017, 19, 1204–1207.

    無法下載圖示 電子全文延後公開
    2025/08/17
    QR CODE