簡易檢索 / 詳目顯示

研究生: 徐茂庭
Hsu, Mao-Ting
論文名稱: fmr1基因剔除影響斑馬魚社會行為發育與Omega-3多元不飽和脂肪酸之治療效果
The Developmental Abnormalities in Social Behavior and Therapeutic Effects of Omega-3 Polyunsaturated Fatty Acid in fmr1 Knock-Out Zebrafish (Denio rerio)
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 97
中文關鍵詞: 斑馬魚X染色體脆折症自閉症fmr1社會行為ω-3不飽和脂肪酸
英文關鍵詞: zebrafish, fragile X syndrome, autism, fragile X mental retardation 1, social behavior, omega-3 polyunsaturated fatty acids
DOI URL: https://doi.org/10.6345/NTNU202204567
論文種類: 學術論文
相關次數: 點閱:291下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • X染色體脆折症(fragile X syndrome, FXS)是最普遍的遺傳性智能障礙症。前人文獻指出FXS在男性及女性的好發比例分別約1/4000及1/8000,而疾病形成原因主要為在表現fmr1基因的啟動子(promoter)上具有過多的CGG重複導致fmr1基因無法正常表現蛋白質(fragile x mental retardation protein, FMRP)與其功能。FXS常見的徵狀包含學習障礙、注意力不集中、過動、焦慮、自閉行為以及社會行為異常等等。而最近斑馬魚由於純熟的基因轉殖技術以及發育學上豐富的研究成果,因此在探討人類疾病中被視為理想的模式動物。而在我們實驗室先前的研究發現fmr1基因剔除斑馬魚會有許多不正常的行為表現,像是過動、不正常的焦慮表現以及恐懼記憶受損。此外,在先前的研究也指出fmr1基因與社會行為的發育有相關。為了探究此議題,我們應用群游行為、群游偏好行為、自發性空間探索行為以及焦慮行為進行相關實驗。此外,我們也利用不飽和脂肪酸的補充來探究其對於在fmr1基因剔除斑馬魚異常行為表現之治療效果。
    而我們先前研究發現fmr1基因剔除斑馬魚會有群游偏好行為提早發育的現象,並且其現象與焦慮行為有相關,但在此研究中並沒有針對單純同種魚群以及異種魚群的群游進行研究探討。以外,我們繼續探討此群游行為的差異並利用另一種焦慮行為分析方法(novel tank task)探討兩者的相關性。而結果顯示不論在野生型以及fmr1基因剔除斑馬魚,群游行為會在受精後14天形成,並在基因剔除的動物中的群游程度會比正常野生型來得高。此外,研究也發現基因剔除隻斑馬魚在受精後28天會有過動以及焦慮異常的現象,這些結果指出群游行為的差異與過動及焦慮異常有相關。
    另一方面,我們也想探討ω-3不飽和脂肪酸(n-3 polyunsaturated fatty acids, n-3 PUFAs)對於fmr1基因剔除斑馬魚行為異常之治療效果,因為在其中的二十二碳六烯酸(docosahexaenic acid, DHA)以及二十碳五烯酸(eicosapentaenoic acid, EPA)屬於必需的養分,而文獻指出補充DHA以及EPA可以降低過早死亡的風險以及提升心智能力。此外,在給予ω-3不飽和脂肪酸補充後可降低異常行為的發生,其中包含社會行為異常、自閉以及注意力缺陷。而近期的報告指出在fmr1基因剔除小鼠補充ω-3不飽和脂肪酸可以治療異常的行為,例如:情緒變化、社會互動以及非空間性的記憶能力。在我們的研究中,基因剔除斑馬魚端腦中的grin1b表現量顯著的下降,而htr2a以及htr2cl1兩者表現量顯著的提升。而透過氣相色譜法-質譜法聯用分析全魚的脂肪酸比例,發現基因剔除斑馬魚的不飽和脂肪酸比一般野生型低。此外,我們也發現ω-3不飽和脂肪酸的補充可以治療其行為異常,像是不正常的焦慮表現以及恐懼記憶受損。然而,在肝臟中的ω-3不飽和脂肪酸合成相關酵素的基因表現量沒有顯著的差異。統整以上結果,基因剔除斑馬魚之行為異常可能跟不飽和脂肪酸比例較低有關,以及ω-3不飽和脂肪酸補充對於X染色體脆折症是一種具有潛力的治療方法。

    Fragile X syndrome (FXS) is the most generally hereditary form of human mental retardation. Previous researches showed that the onset ratio of FXS is approximately 1/4000 in male and 1/8000 in female. It frequently induced by triplet repeat expansion (CGG) mutation in fragile X mental retardation 1 (fmr1) gene promoter, and resulted in absence of the fragile x mental retardation protein (FMRP) expression. The common symptoms of fragile X patients include learning disabilities, inattention, hyperactivity, anxiety, autistic behaviors, social impairments, as well as other behavioral abnormalities. Recently, zebrafish is considered as an ideal animal model for studying human neurological disorder, due to the progression of genetic techniques and accumulated knowledge on the developmental biology of zebrafish. Our previous results demonstrated the behavioral abnormalities in fmr1 knock out zebrafish such as hyperactivity, abnormal anxiety level, fear memory impairment and autism-like behavior. The present study was aimed to study the functional role of fmr1 gene on the development of social behavior. For achieving this goal, behavioral experiment including shoaling behavior, shoaling preference, locomotor activity monitoring and novel tank task were applied. In addition, we also evaluated the possible therapeutic effect of dietary supplement with polyunsaturated fatty acid on the behavioral abnormalities in fmr1 KO zebrafish.
    Our results demonstrated the precocious development of shoaling preference behavior is found in fmr1 KO zebrafish which might be resulted from the elevated anxiety level in fmr1 KO zebrafish, but do not affect the development of shoaling preference on conspecific zebrafish. We determined the relation between shoaling preference behavior and anxiety level by novel tank test, a well-established behavioral test for anxiety-like behavior in zebrafish. Results indicated the shoaling behavior appeared after 14 dpf, and the level of shoaling in fmr1 KO zebrafish is higher than the wildtype control. Furthermore, the locomotor activity was elevated in fmr1 KO zebrafish at 28 dpf, and they expressed higher anxiety level in novel tank test. These results suggest that the change of shoaling behavior in fmr1 KO zebrafish may be resulted from hyperactivity and increase of anxiety.
    We also evaluated the possible therapeutic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as ALA, EPA, and DHA, on behavioral abnormalities in fmr1 KO fish. It is well-known that DHA and EPA are essential nutrients which can reduce the mortality of premature born infants, and they have been proved to enhance mental function in both aging and Alzheimer patients. Studies also suggest the dietary supplement of n-3 PUFAs can reduce the behavioral abnormalities including social-relative problems, autistic, and attention deficit. Recently, n-3 PUFAs supplementation was proved to rescue the behavioral abnormalities, such as alterations in emotionality, social interaction and non-spatial memory in fmr1 KO mice. In our experiments, it indicated that the telencephalic gene expression of grin1b declined in fmr1 KO zebrafish, but htr2a and htr2cl1 elevated after fmr1 loss-off-function. According to our gas chromatography-mass spectrometry (GC-MS) results, a reduction in total PUFAs of the fmr1 KO zebrafish body was found which raised the possibility of using n-3 PUFAs as an adjunctive therapy for FXS. Our results demonstrated that after 4 weeks of n-3 PUFAs dietary treatment can partially rescue abnormal behaviors, such as elevated anxiety level and avoidance learning impairment. However, in the liver gene expression of omega-3 synthesis enzymes, there was no significantly difference between wild-type and fmr1 KO zebrafish. We suggested that the lack of PUFAs may account for the abnormal behaviors in fmr1 KO zebrafish, and the n-3 PUFAs supplementation is a potential therapy agent for FXS patients.

    Table of content 1 Abbreviation table 3 中文摘要 5 Abstract 8 Introductions 11 1. Zebrafish 11 2. Fragile X syndrome (FXS) 11 3. Animal models for studying FXS 14 4. Social behavior 16 5. Omega-3 Polyunsaturated Fatty Acids 18 6. Aims 20 Materials and Methods 21 1. Animals 21 2. Genotyping 21 3. Western blot analysis 22 4. Behavioral analysis 23 5. Gene expression quantitative analysis 27 6. Analyzing the fatty acids composition in fmr1 KO zebrafish 30 7. Behavior analysis after n-3 PUFAs supplement 32 Results 33 1. Qualitative analysis of the genotype 33 2. Shoaling behavior and shoaling preference in wildtype and fmr1 KO zebrafish at 14 and 28 dpf 33 3. Locomotor activity in larval zebrafish 36 4. Evaluate the anxiety-like behavior of fmr1 KO zebrafish by using novel tank task 36 5. Analyzing the locomotor activity of wild-type and fmr1 KO zebrafish 37 6. The anxiety-like behavior in wildtype and fmr1 KO zebrafish 37 7. The shoaling behavior and shoaling preference of wildtype and fmr1 KO zebrafish 38 8. Inhibitory avoidance learning in wildtype and fmr1 KO zebrafish without dietary treatment 38 9. Decrease in glutamate receptor but increase in 5-hydroxytryptamine receptor mRNA content in fmr1 KO zebrafish telencephalon 39 10. Low polyunsaturated fatty acid content in fmr1 KO comparing with WT zebrafish 40 11. Fatty acid composition in different dose of n-3 PUFAs diets 40 12. Linseed oil enrichment incrementally elevated the composition of total PUFAs with duration of treatment 41 13. n-3 PUFAs supplement elevated the composition of total PUFAs after 4 weeks of dietary treatment 42 14. Locomotor activity in wildtype and fmr1 KO zebrafish after 4 weeks of dietary treatment 43 15. The anxiety-like behavior in wildtype and fmr1 KO zebrafish after 4 weeks of dietary treatment 44 16. The shoaling behavior and shoaling preference of wildtype and fmr1 KO zebrafish after 4 weeks dietary treatment with 4% linseed oil plus 4% fish oil 44 17. Inhibitory avoidance learning in wildtype and fmr1 KO zebrafish after 4 weeks of dietary treatment 45 18. Comparison of fatty acid composition between normal diet and 4% linseed oil + 4% fish oil diet in wildtype and fmr1 KO zebrafish 46 19. No significant difference in gene expression of omega-3 synthesis enzymes in liver between wildtype and fmr1 KO zebrafish 48 20. Glutamate and 5-hydroxytryptamine receptor expression in wildtype and fmr1 KO zebrafish telencephalon after 4 weeks n-3PUFAs supplement 49 Discussions 50 References 58 Tables and figures 71

    Abitbol M, Menini C, Delezoide AL, Rhyner T, Vekemans M, Mallet J (1993) Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat Genet 4:147-153.
    Abu EO, Oluwatowoju I (2009) Omega-3 index determined by gas chromatography with electron impact mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 80:189-194.
    Alimuddin, Yoshizaki G, Kiron V, Satoh S, Takeuchi T (2005) Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon delta6-desaturase-like gene in zebrafish. Transgenic Res 14:159-165.
    American Psychiatric A, American Psychiatric A, Force DSMT (2013) Diagnostic and statistical manual of mental disorders : DSM-5.
    Ashley CT, Jr., Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563-566.
    Association AP, ed (1994) Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Washington, DC: American Psychiatric Association.
    Baba Y, Uitti RJ (2005) Fragile X-associated tremor/ataxia syndrome and movements disorders. Curr Opin Neurol 18:393-398.
    Bakker CE, Verheij C, Willemsen R, Vanderhelm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA, Reyniers E, Deboulle K, Dhooge R, Cras P, Vanvelzen D, Nagels G, Martin JJ, Dedeyn PP, Darby JK, Willems PJ (1994) FMR1 knockout mice - A model to study fragile-X mental-retardation. Cell 78:23-33.
    Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201-214.
    Bell JG, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S, Boyle RM, Graham C, O'Hare AE (2010) The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 103:1160-1167.
    Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325-337.
    Brown WT, Jenkins EC, Friedman E, Brooks J, Wisniewski K, Raguthu S, French J (1982) Autism is associated with the fragile-X syndrome. J Autism Dev Disord 12:303-308.
    Budimirovic DB, Kaufmann WE (2011) What can we learn about autism from studying fragile X syndrome? Dev Neurosci 33:379-394.
    Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75:259-269.
    Cheever A, Ceman S (2009) Phosphorylation of FMRP inhibits association with Dicer. RNA 15:362-366.
    Cheng CL, Huang SJ, Wu CL, Gong HY, Ken CF, Hu SY, Wu JL (2015) Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection. J Biomed Sci 22:103.
    Churchill JD, Grossman AW, Irwin SA, Galvez R, Klintsova AY, Weiler IJ, Greenough WT (2002) A converging-methods approach to fragile X syndrome. Dev Psychobiol 40:323-338.
    Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94:5401-5404.
    Connor S, Tenorio G, Clandinin MT, Sauve Y (2012) DHA supplementation enhances high-frequency, stimulation-induced synaptic transmission in mouse hippocampus. Appl Physiol Nutr Metab 37:880-887.
    Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A 98:11691-11696.
    Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489-499.
    De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Oger C, Guy A, Bultel-Ponce V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J (2012) Partial rescue of Rett syndrome by omega-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr 7:447-458.
    den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF (2009) Generation and characterization of FMR1 knockout zebrafish. PLoS One 4:e7910.
    Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL (1993) The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 4:335-340.
    Dreosti E, Lopes G, Kampff AR, Wilson SW (2015) Development of social behavior in young zebrafish. Frontiers in Neural Circuits 9:9.
    Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52.
    Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38-44.
    Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14:881-884.
    Engeszer RE, Barbiano LA, Ryan MJ, Parichy DM (2007) Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74:1269-1275.
    Feng Y, Absher D, Eberhart DE, Brown V, Malter HE, Warren ST (1997) FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell 1:109-118.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497-509.
    Francis SM, Sagar A, Levin-Decanini T, Liu W, Carter CS, Jacob S (2014) Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res.
    Fu YH, Kuhl DPA, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk A, Holden JJA, Fenwick RG, Warren ST, Oostra BA, Nelson DL, Caskey CT (1991) Variation of the CGG repeat at the fragile-X site results in genetics instability - resolution of the sherman paradox. Cell 67:1047-1058.
    Garber K, Smith KT, Reines D, Warren ST (2006) Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 16:270-275.
    Gerlai R (2014) Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods 234:59-65.
    Gregory MK, Gibson RA, Cook-Johnson RJ, Cleland LG, James MJ (2011) Elongase Reactions as Control Points in Long-Chain Polyunsaturated Fatty Acid Synthesis. PLoS One 6:e29662.
    Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 26:7151-7155.
    Hagerman RJ (2006) Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr 27:63-74.
    Hinds HL, Ashley CT, Sutcliffe JS, Nelson DL, Warren ST, Housman DE, Schalling M (1993) Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat Genet 3:36-43.
    Hsu MT, Wu YJ, Ng MC, Yang YL, Lu KT (2014) Fragile X mental retardation-1 knockout zebrafish showed precocious development in social behavior. J Neurochem 130:64-64.
    Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746-7750.
    Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497-2508.
    Joffre C, Nadjar A, Lebbadi M, Calon F, Laye S (2014) n-3 LCPUFA improves cognition: the young, the old and the sick. Prostaglandins Leukot Essent Fatty Acids 91:1-20.
    Johnson M, Mansson JE, Ostlund S, Fransson G, Areskoug B, Hjalmarsson K, Landgren M, Kadesjo B, Gillberg C (2012) Fatty acids in ADHD: plasma profiles in a placebo-controlled study of Omega 3/6 fatty acids in children and adolescents. Atten Defic Hyperact Disord 4:199-204.
    Kavraal S, Oncu SK, Bitiktas S, Artis AS, Dolu N, Gunes T, Suer C (2012) Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats. Brain Res 1482:32-39.
    Kelleher RJ, 3rd, Bear MF (2008) The autistic neuron: troubled translation? Cell 135:401-406.
    Kelly L, Grehan B, Chiesa AD, O'Mara SM, Downer E, Sahyoun G, Massey KA, Nicolaou A, Lynch MA (2011) The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging 32:2318 e2311-2315.
    Kidd PM (2007) Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 12:207-227.
    Kim L, He L, Maaswinkel H, Zhu L, Sirotkin H, Weng W (2014) Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry.
    Koekkoek SK et al. (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47:339-352.
    Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Gregoire S, Bretillon L, Laye S (2012) Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice. PLoS One 7:e36861.
    Laye S (2010) Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82:295-303.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854.
    Liu ZH, Chuang DM, Smith CB (2011) Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol 14:618-630.
    Mahabir S, Chatterjee D, Buske C, Gerlai R (2013) Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav Brain Res 247:1-8.
    Martin JP, Bell J (1943) A Pedigree of Mental Defect Showing Sex-Linkage. J Neurol Psychiatry 6:154-157.
    Maximino C, Benzecry R, Oliveira KRM, Batista EDO, Herculano AM, Rosemberg DB, de Oliveira DL, Blaser R (2012) A comparison of the light/dark and novel tank tests in zebrafish. Behaviour 149:1099-1123.
    Maximino C, Puty B, Benzecry R, Araujo J, Lima MG, Batista EDO, Oliveira KRD, Crespo-Lopez ME, Herculano AM (2013) Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 71:83-97.
    McCann JC, Ames BN (2005) Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 82:281-295.
    McLennan Y, Polussa J, Tassone F, Hagerman R (2011) Fragile x syndrome. Curr Genomics 12:216-224.
    McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ (2008) Evidence for social anxiety and impaired social cognition in a mouse model of Fragile X syndrome. Behav Neurosci 122:293-300.
    Meiri G, Bichovsky Y, Belmaker RH (2009) Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharmacol 19:449-451.
    Miller N, Gerlai R (2012) From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio). PLoS One 7:e48865.
    Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS (2010) GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One 5:e9706.
    Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE (2002) Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12:39-46.
    Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA (1995) Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 36:2433-2443.
    Nakamoto M, Jin P, O'Donnell WT, Warren ST (2005) Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet 14:3813-3821.
    Ng MC, Yang YL, Lu KT (2013) Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS One 8:e51456.
    Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21:5139-5146.
    Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas MF, Mandel JL (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097-1102.
    Ooi YP, Weng SJ, Jang LY, Low L, Seah J, Teo S, Ang RP, Lim CG, Liew A, Fung DS, Sung M (2015) Omega-3 fatty acids in the management of autism spectrum disorders: findings from an open-label pilot study in Singapore. Eur J Clin Nutr.
    Osterweil EK, Chuang SC, Chubykin AA, Sidorov M, Bianchi R, Wong RK, Bear MF (2013) Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77:243-250.
    Pietropaolo S, Goubran MG, Joffre C, Aubert A, Lemaire-Mayo V, Crusio WE, Laye S (2014) Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice. Psychoneuroendocrinology 49:119-129.
    Reiss AL, Hall SS (2007) Fragile X syndrome: assessment and treatment implications. Child Adolesc Psychiatr Clin N Am 16:663-675.
    Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol 23:43-61.
    Santos AR, Kanellopoulos AK, Bagni C (2014) Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem 21:543-555.
    Schaefer GB, Mendelsohn NJ (2008) Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet Med 10:4-12.
    Shih JC, Chen K (1999) MAO-A and -B gene knock-out mice exhibit distinctly different behavior. Neurobiology (Bp) 7:235-246.
    Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993a) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291-298.
    Siomi H, Matunis MJ, Michael WM, Dreyfuss G (1993b) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21:1193-1198.
    Sorensen EM, Bertelsen F, Weikop P, Skovborg MM, Banke T, Drasbek KR, Scheel-Kruger J (2015) Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse. Behav Pharmacol 26:733-740.
    Steenbergen PJ, Richardson MK, Champagne DL (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222:15-25.
    Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293-296.
    The CDER Safety Research Interest Group (2015) Assessing CDER’s Drug Safety- Related Regulatory Science Needs and Identifying Priorities. Center for Drug Evaluation and Research
    Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 15:3446-3458.
    Turner G, Webb T, Wake S, Robinson H (1996) Prevalence of fragile X syndrome. Am J Med Genet 64:196-197.
    van 't Padje S (2007) Zebrafish as a Model to study Human Disease: Functional Studies of the FXR Proteins. In: Erasmus University Rotterdam.
    van 't Padje S, Engels B, Blonden L, Severijnen LA, Verheijen F, Oostra BA, Willemsen R (2005) Characterisation of Fmrp in zebrafish: evolutionary dynamics of the fmr1 gene. Dev Genes Evol 215:198-206.
    Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905-914.
    Westerfield M (2007) The Zebrafish Book: A Guide for Laboratory Use of the Zebrafish Denio* (Brachydanio) rerio. University of Oregon.
    Young LJ, Pitkow LJ, Ferguson JN (2002) Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 7 Suppl 2:S38-39.
    Zhang W, Li P, Hu X, Zhang F, Chen J, Gao Y (2011) Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Front Biosci (Landmark Ed) 16:2653-2670.
    Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591-603.
    Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25:7385-7392.

    下載圖示
    QR CODE