簡易檢索 / 詳目顯示

研究生: 黃鉉評
Huang, Syuan-Ping
論文名稱: 利用超快雷射實現PCR微流體元件於新冠肺炎核酸檢測
Implement of PCR Microfluidic Devices Using Ultra-Fast Laser Technique for DNA Amplification in Diagnostic Tests for COVID-19
指導教授: 張天立
Chang, Tien-Li
口試委員: 王建評 李青澔 劉正哲 鄭淳護 張天立
口試日期: 2021/08/25
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 超快雷射微流體元件陣列微柱電流檢測聚合酶連鎖反應核酸
英文關鍵詞: Ultrafast laser, Microfluidic device, Micro-array pillar, Electrical detection, PCR, DNA
DOI URL: http://doi.org/10.6345/NTNU202101204
論文種類: 學術論文
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 第一節 研究背景與目的 1 第二節 生醫晶片簡介 2 第三節 微流體元件技術簡介 3 第四節 雷射製程技術簡介 5 第二章 文獻回顧 7 第一節 超快雷射加工介紹 7 第二節 微流體元件介紹 13 第三節 毛細作用力原理 21 第四節 微型加熱元件簡介 28 第五節 生物晶片檢測技術介紹 30 第三章 研究方法與設計 36 第一節 實驗設計 36 第二節 微流體元件設計 36 第三節 超快雷射製程系統 37 第四節 陣列微結構影響流體驅動行為 44 第五節 陶瓷加熱元件 45 第六節 微流體元件之應用 46 第七節 實驗與量測設備 54 第四章 結果與討論 56 第一節 超快雷射於鈉鈣玻璃加工 56 第二節 製作奈米銀電極於微流體元件 66 第三節 微流體元件之流體驅動性能分析 69 第四節 微流體元件於檢測生物分子電響應之應用 78 第五節 聚合酶連鎖反應之應用 85 第五章 結論與未來展望 101 第一節 結論 101 第二節 未來展望 103 參考文獻 104

    [1]. 環球生技雜誌-「全球新冠檢測開發契機: 自動化、數位化、多重感染檢測」
    [2]. 電子工程專輯-「COVID-19下的經濟贏家」
    [3]. C. T. Kung, H. Gao, L. M. Fu, Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis, Chemical Engineering Journal, Vol. 399, pp 125748 (2020)
    [4]. B. Hannes, J. Vieillard, M. Cabrera, The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis, Sensors and Actuators B: Chemical, Vol. 129, pp. 255-262 (2008)
    [5]. S. Höving, D. Janasek, P. Novo, Flow rate independent gradient generator and application in microfluidic free-flow electrophoresis, Analytica Chimica Acta, Vol. 1044, pp. 77-85 (2018)
    [6]. B Mathew, A Alazzam, Fabrication of microfluidic devices with 3D embedded flow-invasive microelements, Microelectronic Engineering, Vol. 187-188, pp. 27-32 (2020)
    [7]. C. H. Chuang, Y. Y. Chiang, Bio-O-Pump: a novel portable microfluidic device driven by osmotic pressure, Sensors and Actuators B: Chemical, Vol. 284, pp. 736-743 (2019)
    [8]. 台灣醫學會-個人化醫療:世界衛生組織-非傳染性疾病及其風險因素
    [9]. 基因學於臨床應用之整合http://www.fma.org.tw/2015/bio-1.html
    [10]. S. J. Lee, S. Y. Lee Micro total analysis system (μ-TAS) in biotechnology, Applied Microbiology and Biotechnology, Vol. 64, pp. 289-299 (2004)
    [11]. C. Y. Huang, C. H. Kuo, W. T. Hsiao, K. C. Huang, Glass biochip fabrication by laser micromachining and glass-molding process, Journal of Materials Processing Technology, Vol. 212, pp. 633-639 (2012)
    [12]. E. Primiceri, R. Rinaldi, Cell chips as new tools for cell biology – results, perspectives and opportunities, Lab on a Chip, Vol. 13, pp. 3789-3802 (2013)
    [13]. J. Zhang, S. Yan, W. H. Li, Fundamentals and applications of inertial microfluidics: a review, Lab on a Chip, Vol. 16, pp. 10-34 (2016)
    [14]. G. R. Wang, F. Yang, W. Zhao, There can be turbulence in microfluidics at low Reynolds number, Lab on a Chip, Vol. 14, pp. 1452-1458 (2014)
    [15]. Z. Zhang, W. H. Wang, R. Jiang, Investigation on geometric precision and surface quality of microholes machined by ultrafast laser, Optics & Laser Technology, Vol. 121, pp. 105834 (2020)
    [16]. S. Kiiper, M. Stuke, Femtosecond UV excimer laser ablation, Applied Physics B : Lasers and Optics, Vol. 44, pp. 199-204 (1987)
    [17]. F. Claverie, Laser ablation, Sample Introduction Systems in ICPMS and ICPOES, Vol. 10, pp. 469-531 (2020)
    [18]. T. D. Le, J. An, Y. Kim, Femtosecond laser direct writing of graphene oxide film on polydimethylsiloxane (PDMS) for flexible and stretchable electronics, Lasers and Electro-Optics Pacific Rim (CLEO-PR), Vol. 10, pp. 1-4, (2017)
    [19]. J. Chen, Y. Wu, H. Zeng, Simple and fast patterning process by laser direct writing for perovskite quantum dots, Advanced Materials Technologies Vol. 2, pp. 1700032 (2017)
    [20]. B. Zhang, Q. Liu, Z. M. Zeng, Super-resolution GaAs nano-structures fabricated by laser direct writing, Materials Science in Semiconductor Processing, Vol. 84, pp. 119-123 (2018)
    [21]. S. Milles, B. Voisiat, A. F. Lasagni, Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology, Journal of Materials Processing Technology, Vol. 270, pp. 142-151 (2019)
    [22]. X. Ku, Z. Zhang, G. Li, Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique, Microfluidics and Nanofluidics, Vol. 22, pp. 82 (2018)
    [23]. M. G. Gang, K. W. Chae, B. K. Min, Wettability modification of cyclic olefin copolymer surface and microchannel using micromilling process, Journal of Manufacturing Processes, Vol. 37, pp. 168-176 (2019)
    [24]. H. Matsumoto, T. Okabe, J. Taniguchi, Microchannel fabrication via ultraviolet-nanoimprint lithography and electron-beam lithography using an ultraviolet-curable positive-tone electron-beam resist, Microelectronic Engineering, Vol. 226, pp. 111278 (2020)
    [25]. T. Ching, M. Hashimoto, Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing, Sensors and Actuators B: Chemical, Vol. 297, pp. 126609 (2019)
    [26]. D. Nieto, M. Aymerich, R. Couceiro, A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture, Colloids and Surfaces B: Biointerfaces, Vol. 134, pp. 363-369 (2015)
    [27]. T. L. Chang, Z. C. Chen, Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels, Microelectronic Engineering, Vol. 158, pp. 95-101 (2016)
    [28]. H. J. Butt, M. Kappl, Normal capillary forces, Advances in Colloid and Interface Science, Vol. 146, pp. 48-60 (2009)
    [29]. D. Juncker, H. Schmid, E. Delamarche, Autonomous microfluidic capillary system, Analytical chemistry, Vol. 74, pp. 6139-6144 (2002)
    [30]. Y. S. Sohn, D. P. Neikirk, A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue", Biosensors and Bioelectronics, Vol. 21, pp. 303-312 (2005)
    [31]. A. Olanrewaju, M. Beaugrand, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Vol. 18, Lab on a Chip, pp. 2323-2347 (2018)
    [32]. D. Juncker, R. Safavieh, A. Tamayol, Serpentine and leading-edge capillary pumps for microfluidic capillary systems, Microfluid Nanofluid, Vol. 18, pp. 357-366 (2015)
    [33]. K. Muto, D. Ishii, Effects of anisotropic liquid spreading on liquid transport in arrow-like micropillar arrays, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 544, pp. 86-90 (2018)
    [34]. L. Gervais, M. Hitzbleck, E. Delamarche, Capillary-driven multiparametric microfluidic chips for one-step immunoassays, Biosensors and Bioelectronics, Vol. 27, pp. 64-72 (2011)
    [35]. K. Papp, E. Holczer, J. Prechl, Multiplex determination of antigen specific antibodies with cellbinding capability in a self-driven microfluidic system, Sensors and Actuators B: Chemical, Vol. 238, pp. 1092-1097 (2017)
    [36]. R. Epifania, R. R. G. Soares, J. P. Conde, Capillary-driven microfluidic device with integrated nanoporousmicrobeads for ultrarapid biosensing assays, Sensors and Actuators B: Chemical, Vol. 265, pp. 452-458 (2018)
    [37]. S. E. Moon, H. K. Lee, Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique, Sensors and Actuators B: Chemical, Vol. 217, pp. 146-150 (2015)
    [38]. Z. C. Chen, T. L. Chang, Application of self-heating graphene reinforced polyvinyl alcohol nanowires to high-sensitivity humidity detection, Sensors and Actuators B: Chemical, Vol. 327, pp. 128934 (2021)
    [39]. O. C. Jeong, S. S. Yang, Fabrication of a thermopneumatic microactuator with a corrugated p+ silicon diaphragm, Sensors and Actuators A: Physical, Vol. 80, pp. 62-67 (2003)
    [40]. G. D. Graaf, A. A. Prouza, M. Ghaderi, Micro thermal conductivity detector with flow compensation using a dual MEMS device, Sensors and Actuators A: Physical, Vol. 249, pp. 186-198 (2016)
    [41]. M. H. Hsiao, C. P. Wang, T. L. Chang, The investigation of electrothermal response and reliability of flexible graphene micro-heaters, Microelectronic Engineering, Vol. 228, pp 111334 (2020)
    [42]. L. Yao, L. Wang, J. Lin, A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7, Sensors and Actuators B: Chemical, Vol. 259, pp. 1013-1021 (2018)
    [43]. Z. Altintas, M. Akgun, G. Kokturk, A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection, Biosensors and Bioelectronics, Vol. 100, pp. 541-548 (2018)
    [44]. H. Tachibana, M. Saito, E. Tamiya, Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification, Sensors and Actuators B: Chemical, Vol. 206, pp. 303-310 (2015)
    [45]. F. Cui, W. Chen, X. Wu, Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode, Microsystem Technologies, Vol. 23, pp. 3069-3079 (2017)
    [46]. T. L. Chang, Z. C. Chen, C. C. Liu, Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device, Biosensors and Bioelectronics, Vol. 146, pp. 111581 (2019)
    [47]. R. Kumar, R. Singh, D. P. Singh, E. Joanni, R. M. Yadav, S.A. Moshkalev, Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications, Coordination Chemistry Reviews, Vol. 342, pp. 34-79 (2017)
    [48]. G. Pal, A. Dutta, K. Mitra, M. S. Grace, A. Amat, T. B. Romanczyk, X. J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes, Journal of Photochemistry and Photobiology B: Biology, Vol. 86, pp. 252-261 (2007)
    [49]. W. Pacquentin, N. Caron, R. Oltra, Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance, Applied Surface Science, Vol. 288, pp. 34-39 (2014)
    [50]. T. L. Chang, Z. C. Chen, S. F. Tseng, Laser micromachining of screen-printed graphene for forming electrode structures, Applied Surface Science, Vol. 374, pp.305-311 (2016)
    [51]. T. Wang, F. Xiao, J. H. Ren, 3D nitrogen-doped carbon nanofoam arrays embedded with PdCu alloy nanoparticles: Assembling on flexible microelectrode for electrochemical detection in cancer cells, Analytica Chimica Acta, Vol. 1158, pp. 338420 (2021)
    [52]. M. H. Zhao, L. Cui, C. Y. Zhang, Low-background electrochemical biosensor for one-step detection of base excision repair enzyme, Biosensors and Bioelectronics, Vol. 150, pp. 111865 (2019)
    [53]. J. Leighton, L. W. Estes, S. Mansukhani, A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium, Cancer, Vol. 26, pp. 1022-1028 (1970)
    [54]. A. Nogales, S. F. Baker, W. Domm, L. M. Sobrido, Development and applications of single-cycle infectious Influenza A Virus (sciIAV), Virus Res., Vol.216, pp.26-40 (2016)
    [55]. A. Olanrewaju, D. Juncker, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Lab Chip, Vol.16, pp. 2323-2347 (2018)
    [56]. Y. S. Sohn, D. P. Neikirk, A. Goodey, A microbead array chemical sensor using capillary-based sample introduction: toward the development of an “electronic tongue”, Biosensors and Bioelectronics, Vol. 21, pp. 303-312 (2005)
    [57]. K. W. Oh, K. Lee, B. Ahn, Design of pressure-driven microfluidic networks using electric circuit analogy, Lab Chip, Vol. 12, pp. 515 (2012)
    [58]. C. Sun, H. You, R. X. Xu, Performance optimization of microvalves based on a microhole array for microfluidic chips, Journal of Analytical Methods in Chemistry, Vol. 2020, pp. 8-19 (2020)
    [59]. J. K. Kim, M. Varenberg, Contact splitting in dry adhesion and friction: reducing the influence of roughness, journal of nanotechnology, Vol.10, pp 1-8 (2019)
    [60]. X. R. Li, Y. G. Zhou, Electrochemical detection of circulating tumor cells: A mini review, Electrochemistry Communications, Vol. 124, 106949(2021)
    [61]. 中華民國衛生福利部疾病管制署疫苗研製中心-SARS-CoV-2病毒核酸檢測
    [62]. H. Liu, Y. Li, M. Hong, High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation, Optics&Laser Technology, Vol. 132, pp. 106472 (2020)
    [63]. R. Pan, M. Y. Cai, M. L. Zhong, Extremely high Cassie–Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro–nano structures, Journal of Materials Chemistry A, Vol.7, pp. 18050-18062 (2019)
    [64]. U. Tuvshindorj, A. Yildirim, M. Bayindir, Robust Cassie state of wetting in transparent superhydrophobic coatings, Materials & Interfaces, Vol.6, pp. 9680-9688 (2014)
    [65]. W. Fang, H. Y. Guo, X. Q. Feng, Revisiting the critical condition for the Cassie-Wenzel transition on micropillar-structured surfaces, Langmuir, Vol.34, pp. 3838-3844 (2018)
    [66]. L. Yang, X. Luo, Y. Tian, Manufacturing of anti-fogging super-hydrophilic microstructures on glass by nanosecond laser, Journal of Manufacturing Processes, Vol. 59, pp. 557-565 (2020)
    [67]. C. Sun, H. You, Y. Xie, Performance Optimization of microvalves based on a microhole array for microfluidic chips, Journal of Analytical Methods in Chemistry, Vol. 2020, pp. 8-13 (2020)
    [68]. J. H. Han, D. Lee, J. J. Pak, A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement, Sensors and Actuators B: Chemical, Vol. 228, pp. 36-42 (2016)
    [69]. H. Wu, Z. Ma, C. Wei, M. Jiang, X. Hong, Y. Li, D. Chen, X. Huang, Three-dimensional microporous hollow fiber membrane microfluidic device integrated with selective separation and capillary self-driven for point-of-care testing, Analytical Chemistry, Vol. 92, pp. 6358-6365. (2020)
    [70]. A. Yakoh, S. Chaiyo, W. Siangproh, O. Chailapakul, 3D capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications, ACS Sensors, Vol.4, pp. 1211-1221 (2019)
    [71]. J. F. Tullius, T. K. Tullius, Y. Bayazitoglu, Optimization of short micro pin fins in minichannels, International Journal of Heat and Mass Transfer, Vol 55, pp. 3921-3932, (2012)
    [72]. Y. Yan, T. Zhao, Z. He, Numerical investigation on the characteristics of flow and heat transfer enhancement by micro pin-fin array heat sink with fin-shaped strips, Chemical Engineering and Processing - Process Intensification, Vol. 160, pp. 108273 (2021)
    [73]. T. Yeo, T. Simon, T. Cui, Enhanced heat transfer of heat sink channels with micro pin fin roughened walls, International Journal of Heat and Mass Transfer, Vol 92, pp. 617-627 (2016)

    無法下載圖示 本全文未授權公開
    QR CODE