簡易檢索 / 詳目顯示

研究生: 黃崇軒
Huang, Chung-Hsuan
論文名稱: 免標記多模態全像斷層造影技術與應用之研究
Studies on Label-free Multimodal Holographic Tomography and Applications
指導教授: 鄭超仁
Cheng, Chau-Jern
口試委員: 林晃巖
Lin, Hoang Yan
陳建宇
Chen, Chien-Yu
杜翰艷
Tu, Han-Yen
陳皇銘
Chen, Huang-Ming
李翔傑
Lee, Hsiang-Chieh
楊承山
Yang, Chan-Shan
口試日期: 2024/07/18
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 數位全像術全像斷層造影電腦全像術深度學習像差校正細胞死亡生物物理參數多模態系統拉曼光譜
英文關鍵詞: digital holography, holographic tomography, computer-generated hologram, deep learning, aberration correction, cell death, biophysical parameters, multimodal system, Raman spectroscopy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401287
論文種類: 學術論文
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 I 中文摘要 II Abstract IV Contents V Figure Lists VIII Table Lists XIII Abbreviations Index XIV Commemorative Photo XV 1. Introduction 1 1.1 Overview of Optical Microscopy 1 1.2 Developments of Digital Holographic Microscopy 4 1.3 Developments of Holographic Tomography 7 1.4 Raman Spectroscopy 13 1.5 Thesis Outline 16 2 Beam Scanning with Active Aberration Correction 18 2.1 Development of Aberration Correction Techniques 18 2.2 Workflow and Experimental Setup 23 2.3 Performance of Active Aberration Correction 27 2.4 Discussions 30 3 Deep Learning-Assisted Holographic Tomography 31 3.1 Aberration Correction with Sparse Beam Scanning Data 31 3.1.1 Deep Sparse Data Aberration Correction (Deep-SDAC) Algorithm 32 3.1.2 Performance Validation 37 3.2 Three-Dimensional Cell Segmentation 40 3.2.1 Flowchart of Cell Segmentation based on 3D U-Net 40 3.2.2 Performance Validation 43 3.3 Discussions 45 4 Three-Dimensional Morphological Characterization of Cell Death 46 4.1 Introduction of Cell Death 46 4.2 Experimental Setup and Cell Preparation 50 4.3 Three-Dimensional Imaging and Biophysical Parameters Analysis 52 4.4 Discussions 57 5 Label-Free Multimodal Holographic Tomography 58 5.1 Introduction of Raman Spectroscopy for Biochemical Detection 58 5.2 Workflow 60 5.3 Focal Spot Control in Three-Dimensions 62 5.4 Multimodal System Setup 65 5.5 Applications for Three-Dimensional Morphological and Biochemical Analysis 67 5.6 Discussions 71 6 Summary and Future Works 72 6.1 Conclusions 72 6.2 Future works 74 Appendixes 76 A1 Comparison with Commercial Holographic Tomography Machines 76 References 79 Journal Publications 91 Conference Publications 92

    [1] J. Jonkman, C. M. Brown, G. D. Wright, K. I. Anderson, and A. J. North, “Tutorial: guidance for quantitative confocal microscopy,” Nat. Protoc. 15, 1585–1611 (2020).
    [2] T. Shibata, T. Narita, Y. Suto, H. Yasmin, and T. Kabashima, “A Facile Fluorometric Assay of Orotate Phosphoribosyltransferase Activity Using a Selective Fluorogenic Reaction for Orotic Acid,” Sensors 23, 2507 (2023).
    [3] S. M. Lewis, M. L. Asselin-Labat, Q. Nguyen, J. Berthelet, X. Tan, V. C. Wimmer, D. Merino, K. L. Rogers, and S. H. Naik, “Spatial omics and multiplexed imaging to explore cancer biology,” Nat. Methods 18, 997-1012 (2021).
    [4] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J P. Larson, N. Ge, F. Peale, M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat. Biotechnol. 21, 41-46 (2003).
    [5] S. Sarkar, P. Le, J. Geng, Y. Liu, Z. Han, M. U. Zahid, D. Nall, Y. Youn, P. R. Selvin, and A. M. Smith, “Short-Wave Infrared Quantum Dots with Compact Sizes as Molecular Probes for Fluorescence Microscopy,” J. Am. Chem. Soc. 142, 3449–3462 (2020).
    [6] I. Y. Eremchev, N. A. Lozing, A. A. Baev, A. O. Tarasevich, M. G. Gladush, A. A. Rozhentsov, and A. V. Naumov, “Luminescence Microscopy of Single Quantum Dot Pairs with Nanometer Spatial Resolution,” JETP Lett. 108, 30-37 (2018).
    [7] T. J. Kim, S. Türkcan, and G. Pratx, “Modular low-light microscope for imaging cellular bioluminescence and radioluminescence,” Nat. Protoc. 12, 1055-1076 (2017).
    [8] A. J. Syed and J. C. Anderson, “Applications of bioluminescence in biotechnology and beyond,” Chem. Soc. Rev. 50, 5668-5705 (2021).
    [9] S. Iwano, M. Sugiyama, H. Hama, A. Watakabe, N. Hasegawa, T. Kuchimaru, K. Z. Tanaka, M. Takahashi, Y. Ishida, J. Hata, S. Shimozono, K. Namiki, T. Fukano, M. Kiyama, H. Okano, S. Kizaka-Kondoh, T. J. McHugh, T. Yamamori, H. Hioki, S. Maki, and A. Miyawaki, “Single-cell bioluminescence imaging of deep tissue in freely moving animals,” Science 359, 935-939 (2018).
    [10] Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Bio. Opt. 19(10), 106002 (2014).
    [11] R. Gallardo-Caballero, C. J. García-Orellana, A. García-Manso, H. M. González-Velasco, R. Tormo-Molina, and M. Macías-Macías, “Precise Pollen Grain Detection in Bright Field Microscopy Using Deep Learning Techniques,” Sensors 19, 3583 (2019).
    [12] S. Baar, M. Kuragano, K. Tokuraku, and S. Watanabe, “Towards a comprehensive approach for characterizing cell activity in bright-field microscopic images,” Sci. Rep. 12, 16884 (2022).
    [13] J. Liu, Q. Yang, S. Chen, Z. Xiao, S. Wen, and H. Luo, “Intrinsic Optical Spatial Differentiation Enabled Quantum Dark-Field Microscopy,” Phys. Rev. Lett. 128, 193601 (2022).
    [14] P. F. Gao, G. Lei, and C. Z. Huang, “Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications,” Anal. Chem. 93, 4707–4726 (2021).
    [15] I. Ishmukhametov, L. Nigamatzyanova, G.r Fakhrullina, and R. Fakhrullin, “Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study,” Anal. Bioanal. Chem. 414, 1297–1312 (2022).
    [16] T. Vicar, J. Balvan, J. Jaros, F. Jug, R. Kolar, M. Masarik, and J. Gumulec, “Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison,” BMC Bioinformatics 20, 360 (2019).
    [17] A. A. Liu, Y. Lu, M. Chen, and Y. T. Su, “Mitosis Detection in Phase Contrast Microscopy Image Sequences of Stem Cell Populations: A Critical Review,” IEEE Trans. Big Data 3, 443-457 (2017).
    [18] K. Toda, M. Tamamitsu, Y. Nagashima, R. Horisaki, and T. Ideguchi, “Molecular contrast on phase-contrast microscope,” Sci. Rep. 9, 9957 (2019).
    [19] M. Wagner and H. Horn, “Optical coherence tomography in biofilm research: A comprehensive review,” Biotechnol. Bioeng. 114, 1386-1402 (2017).
    [20] N. Eladawi, M. Elmogy, M. Ghazal, O. Helmy, A. Aboelfetouh, A. Riad, S. Schaal, and A. El-Baz, “Classification of retinal diseases based on OCT Images,” Frontiers Biosci. 23, 64-247 (2018).
    [21] C. Y. Ng, T. A. Wang, H. C. Lee, B. H. Huang, and M. T. Tsai, “In Vivo Identification of Skin Photodamage Induced by Fractional CO2 and Picosecond Nd:YAG Lasers with Optical Coherence Tomography,” Diagnostics 12, 822 (2022).
    [22] Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
    [23] P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1, 020901 (2014).
    [24] Z. El-Schich, A. L. Mölder, and A. G. Wingren, “Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy,” Appl. Sci. 8, 1027 (2018).
    [25] F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006).
    [26] S. Y. Lee, H. J. Park, K. Kim, Y. H. Sohn, S. Jang, Y. K. Park, “Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus,” Sci. Rep. 7, 1039 (2017).
    [27] V. Balasubramani, M. Kujawińska, C. Allier, V. Anand, C. J. Cheng, C. Depeursinge, N. Hai, S. Juodkazis, J. Kalkman, A. Kuś, M. Lee, P. J. Magistretti, P. Marquet, S. H. Ng, J. Rosen, Y. K. Park, and M. Ziemczonok, “Roadmap on Digital Holography-Based Quantitative Phase Imaging,” J. Imaging 7, 252 (2021).
    [28] R. Smith, K. L. Wright, and L. Ashton, “Raman spectroscopy: an evolving technique for live cell studies,” Analyst 141, 3590-3600 (2016).
    [29] H. J Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J Fullwood, B. Gardner, P. L Martin-Hirsch, M. J Walsh, M. R McAinsh, N. Stone, and F L Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11, 664-687 (2016).
    [30] D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photon. 9, 315-428 (2017).
    [31] Z. Ren, Z. Xu, and E. Y. Lam, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337-344 (2018).
    [32] T. Pitkäaho, A. Manninen, and T. J. Naughton, “Focus prediction in digital holographic microscopy using deep convolutional neural networks,” Appl. Opt. 58, A202-A208 (2019).
    [33] C. H. Wu, X. J. Lai, C. J. Cheng, Y. C. Yu, and C. Y. Chang, “Applications of digital holographic microscopy in therapeutic evaluation of Chinese herbal medicines,” Appl. Opt. 53, G192-G197 (2014).
    [34] E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. mikrosk. Anat. Entwichlungsmech 9, 413-468 (1873).
    [35] M. Kim, Y. Choi, C. F. Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36(2), 148-150 (2011).
    [36] Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620-12631 (2018).
    [37] P. Gao and C. Yuan, “Resolution enhancement of digital holographic microscopy via synthetic aperture: a review,” Light: Adv. Manuf. 3, 1–16 (2022).
    [38] X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51-A58 (2015).
    [39] M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148-150 (2011).
    [40] B. Gul, S. Ashraf, S. Khan, H. Nisar, and Iftikhar Ahmad, “Cell refractive index: Models, insights, applications and future perspectives,” Photodiagn. Photodyn. Ther. 33,102096 (2021).
    [41] R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827-835 (2016).
    [42] C. Kirisits, M. Quellmalz, M. Ritsch-Marte, O. Scherzer, E. Setterqvist, and G. Steidl, “Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations,” Inverse Problems 37, 115002 (2021).
    [43] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photon. 7, 113-117 (2013).
    [44] S. S. Kou, and C. J. R., “Sheppard, Image formation in holographic tomography,” Opt. Lett. 33, 2362-2364 (2008).
    [45] V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
    [46] A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
    [47] F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [48] J. Kostencka, T. Kozacki, M. Dudek, and M. Kujawińska, “Noise suppressed optical diffraction tomography with autofocus correction,” Opt. Express 22, 5731–5745 (2014).
    [49] A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
    [50] Z. Huang and L. Cao, “Quantitative phase imaging based on holography: trends and new perspectives,” Light Sci. Appl. 13, 145 (2024).
    [51] Y. C. Lin and C. J. Cheng, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
    [52] Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42, 1321-1324 (2017).
    [53] D. Pirone, M. M. Villone, P. Memmolo, Z. Wang, V. Tkachenko, W. Xiao, L. Che, L. Xin, X. Li, F. Pan, P. Ferraro, P. L. Maffettone, “On the hydrodynamic mutual interactions among cells for high-throughput microfluidic holographic cyto-tomography,” Opt. Lasers Eng. 158, 107190 (2022).
    [54] B. Vinoth, X. J. Lai, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8, 5943 (2018).
    [55] W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29 (2006).
    [56] I. Sluimer, A. Schilham, M. Prokop, and B. van Ginneken, “Computer analysis of computed tomography scans of the lung: a survey,” IEEE Trans. Med. Imaging 25, 385-405 (2006).
    [57] X. Bao and Y. Wang, “Recent Advancements in Rayleigh Scattering-Based Distributed Fiber Sensors,” Adv. Dev. Instrum. 2021, 1-17 (2021).
    [58] C. C. Moura, R. S. Tare, R. O. C. Oreffo, and S. Mahajan, “Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,” J. R. Soc. Interface 13, 20160182 (2016).
    [59] M. Ayiania, E. Weiss-Hortala, M. Smith, J. S. McEwen, M. Garcia-Perez, “Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles,” Carbon 167, 559-574 (2020).
    [60] J. D. Gelder, K. D. Gussem, P. Vandenabeele, and L. Moens, “Reference database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 113-1147 (2007).
    [61] K. Kajimoto, T. Kikukawa, H. Nakashima, H. Yamaryo, Y. Saito, T. Fujisawa, M. Demura, and M. Unno, “Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus,” J. Phys. Chem. B 121, 4431–4437 (2017).
    [62] R. S. Jakubek, J. Handen, S. E. White, S. A. Asher, and I. K. Lednev, “Ultraviolet resonance Raman spectroscopic markers for protein structure and dynamics,” Trac trend. Anal. Chem. 103, 223-229 (2018).
    [63] F. Madonini and F. Villa, “Single Photon Avalanche Diode Arrays for Time-Resolved Raman Spectroscopy,” Sensors 21, 4287 (2021).
    [64] A. D. Angelis, S. Managò, M. A. Ferrara, M. Napolitano, G. Coppola, and A. C. D. Luca, “Combined Raman Spectroscopy and Digital Holographic Microscopy for Sperm Cell Quality Analysis,” J. Spectrosc. 2017, 9876063 (2017).
    [65] T. A. Brunner, “Impact of lens aberrations on optical lithography,” IBM J. Res. Dev. 41, 57-67 (1997).
    [66] J.S. McLellan, P.M. Prieto, S. Marcos, and S.A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009-3016 (2006).
    [67] K. Niu and C. Tian, “Zernike polynomials and their applications,” J. Opt. 24, 123001 (2022).
    [68] C. McAlinden, Mark McCartney, and Jonathan Moore, “Mathematics of Zernike polynomials: a review,” Clin. Exp. Ophthalmol. 39, 820-827 (2011).
    [69] D. Zhang, J. Fan, H. Zhao, X. Lu, S. Liu, and L. Zhong, “Error evaluation for Zernike polynomials fitting based phase compensation of digital holographic microscopy,” Optik 125, 5148-5152 (2014).
    [70] V. N. Mahajan and G. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994-3016 (2007).
    [71] C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38, 1724-1726 (2013).
    [72] T. Nguyen, V. Bui, V. Lam, C. B. Raub, L. C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043-15057 (2017).
    [73] D. N. Deng, J. Z. Peng, W. J. Qu, Y. Wu, X. L. Liu, W. Q. He, and X. Peng, “Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens,” Appl. Opt. 56, 6007-6014 (2017).
    [74] I. Choi, K. Lee, and Y. K. Park, “Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration,” Opt. Express 25, 30771-30779 (2017).
    [75] Y. Deng, C. H. Huang, B. Vinoth, D. Chu, X. J. Lai, and C. J. Cheng, “A compact synthetic aperture digital holographic microscope with mechanical movement-free beam scanning and optimized active aberration compensation for isotropic resolution enhancement,” Opt. Lasers Eng. 134, 106251 (2020).
    [76] L. C. Lin, C. H. Huang, Y. F. Chen, D. Chu, C. J. Cheng, “Deep learning-assisted wavefront correction with sparse data for holographic tomography,” Opt. Lasers Eng. 154, 107010 (2022).
    [77] D. Maji, P. Sigedar, and M. Singh, “Attention Res-UNet with Guided Decoder for semantic segmentation of brain tumors,” Biomed. Signal Process. Control 71, 103077 (2022).
    [78] N. Ibtehaz and M. S. Rahman, “MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation,” Neural Netw. 121, 74-87 (2020).
    [79] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A Comprehensive Analysis of Deep Regression,” IEEE Trans. Pattern Anal. Mach. Intell. 42, 2065-2081 (2019).
    [80] L. Palagi, “Global optimization issues in deep network regression: an overview,” J. Glob. Optim. 73, 239-277 (2019).
    [81] Q. Li, R. Luo, H. F. Chen, “Dynamical important residue network (DIRN): network inference via conformational change,” Bioinformatics 35, 4664-4670 (2019).
    [82] C. Peng, Y. Liu, X. Yuan, and Q. Chen, “Research of image recognition method based on enhanced inception-ResNet-V2,” Multimed. Tools Appl. 81, 34345-34365 (2022).
    [83] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” arXiv:1602.07261.
    [84] Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images,” IEEE Trans. Biomed. Eng. 57, 841-852 (2010).
    [85] C. F. Koyuncu, S. Arslan, I. Durmaz, R. Cetin-Atalay, C. Gunduz-Demir, “Smart Markers for Watershed-Based Cell Segmentation,” PLoS ONE 7, e48664 (2012).
    [86] C. Molnar, I. H. Jermyn, Z. Kato, V. Rahkama, P. Östling, P. Mikkonen, V. Pietiäinen, and P. Horvath, “Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours,” Sci. Rep. 6, 32412 (2016).
    [87] E. Meijering, “Cell Segmentation: 50 Years Down the Road [Life Sciences],” IEEE Signal Process Mag. 29, 140-145, (2012).
    [88] F. H. D. Araújo, R. R. V. Silva, D. M. Ushizima, M. T. Rezend, C. M. Carneiro, A. G. C. Bianchi, F. N. S. Medeiros, “Deep learning for cell image segmentation and ranking,” Comput. Med. Imaging Graph. 72, 13-21 (2019).
    [89] Y. Al-Kofahi, A. Zaltsman, R. Graves, W. Marshall, and M. Rusu, “A deep learning-based algorithm for 2-D cell segmentation in microscopy images,” BMC Bioinformatics 19, 365 (2018).
    [90] P. Agrawal, N. Katal, and N. Hooda, “Segmentation and classification of brain tumor using 3D-UNet deep neural networks,” Int. J. Cogn. Comput. Eng. 3, 199-210 (2022).
    [91] S. Qamar, H. Jin, R. Zheng, P. Ahmad, and M. Usama, “A variant form of 3D-UNet for infant brain segmentation,” Future Gener. Comput. Syst. 108, 613-623 (2020).
    [92] D. Müller, I. Soto-Rey, and F. Kramer, “Towards a guideline for evaluation metrics in medical image segmentation,” BMC Res. Notes 15, 210 (2022).
    [93] F. Hou, W. Lei, S. Li, J. Xi, M. Xu, J. Luo, “Improved Mask R-CNN with distance guided intersection over union for GPR signature detection and segmentation,” Autom. Constr. 121, 103414 (2021).
    [94] R. E. Ellis, J. Yuan, and H. R. Horvitz, “Mechanisms and Functions of Cell Death,” Annu. Rev. Cell Biol. 7, 663–698 (1991).
    [95] D. L. Vaux and S. J. Korsmeyer, “Cell Death in Development,” Cell 96, 245–254 (1999).
    [96] D. R. Green, “The Coming Decade of Cell Death Research: Five Riddles,” Cell 177, 1094–1107 (2019).
    [97] G. Kroemer, P. Petit, N. Zamzami, J. L. Vayssière, and B. Mignotte, “The biochemistry of programmed cell death,” The FASEB J. 9, 1277-1287 (1995).
    [98] K. C. Zimmermann, C. Bonzon, and D. R. Green, “The machinery of programmed cell death,” Pharmacol. Ther. 92, 57-70 (2001).
    [99] M. D Jacobson, M. Weil, and M. C Raff, “Programmed Cell Death in Animal Development,” Cell 88, 347–354 (1997).
    [100] A. P. B. d. Silva, A. Pollett, S. R. Rittling, D. T. Denhardt, J. Sodek, and R. Zohar, “Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-α expression and non-programmed cell death,” J. Cell. Physiol. 208, 629-639 (2006).
    [101] G. Yan, M. Elbadawi, and T. Efferth, “Multiple cell death modalities and their key features (Review),” World Acad. Sci. J. 2, 39-48 (2020).
    [102] N. Mizushima, “Autophagy: process and function,” Genes Dev. 21, 2861-2873 (2007).
    [103] I. Tanida, T. Ueno, and E. Kominami, “LC3 and Autophagy,” Methods Mol. Biol. 445, 77–88 (2008).
    [104] M. T. J. Halma, P. E. Marik, and Y. M. Saleeby, “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,” Endocr. Metab. Sci. 14, 100163 (2024).
    [105] M. O. Hengartner, “The biochemistry of apoptosis,” Nature 407, 770-776 (2000).
    [106] S. W. Lowe and A. W. Lin, “Apoptosis in cancer,” Carcinogenesis 21, 485-495 (2000).
    [107] Z. Asadzadeh, E. Safarzadeh, S. Sagaei, A. Baradaran, A. Mohammadi, K. Hajiasgharzadeh, A. Derakhshani, A. Argentiero, N. Silvestris, and B. Baradaran, “Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death,” Cancers 12, 1047 (2020).
    [108] J. Li, F. Cao, H. Yin, Z. Huang, Z. Lin, N. Mao, B. Sun, and G. Wang, “Ferroptosis: past, present and future,” Cell Death Dis. 11, 88 (2020).
    [109] B. Liu, W. Wang, A. Shah, M. Yu, Y. Liu, L. He, J. Dang, L. Yang, M. Yan, Y. Ying, Z. Tang, and K. Liu, “Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells,” Cell Death Dis. 12, 230 (2021).
    [110] M. Dodson, R. Castro-Portuguez, D. D. Zhang, “NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis,” Redox Biol. 23, 101107 (2019).
    [111] C. H. Huang, Y. J. Lai, L. N. Chen, Y. H. Hung, H. Y. Tu, and C. J. Cheng, “Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography,” Sensors 24, 3435 (2024)
    [112] Y. Kumamoto, Y. Harada, H. Tanaka, and T. Takamatsu, “Rapid and accurate peripheral nerve imaging by multipoint Raman spectroscopy,” Sci. Rep. 7, 845 (2017).
    [113] K. Shin and H. Chung, “Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications,” Analyst 138, 3335-3346 (2013).
    [114] Paul L. Stiles, Jon A. Dieringer, Nilam C. Shah, and Richard P. Van Duyn, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1, 601-626 (2008).
    [115] H. Chang, H. Kang, S. Jeong, E. Ko, Y. S. Lee, H. Y. Lee, and D. H. Jeong, “A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface,” Rev. Sci. Instrum. 86, 055004 (2015).
    [116] Lingbo Kong and James Chan, “A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array,” Anal. Chem. 86, 13, 6604–6609 (2014).
    [117] F. Sinjab, Z. Liao, and I. Notingher, “Applications of Spatial Light Modulators in Raman Spectroscopy,” Appl. Spectrosc. 73, 727-746 (2019).
    [118] O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2555 (2004).
    [119] D. Y. Alsaka, Ç. Arpali, and S. A. Arpali, “A comparison of iterative Fourier transform algorithms for image quality estimation,” Opt Rev 25, 625–637 (2018).
    [120] J. W. Goodman, Introduction to Fouri er Optics (Roberts & Company, 2004).
    [121] S. Djidel, J. K Gansel, H. I Campbell, and A. H Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express 14, 8269-8277 (2006).
    [122] Nanolive company, 3D CELL EXPLORER-fluo product. (Accessed: 2024) https://www.nanolive.ch/products/3d-microscopes/fluo/
    [123] Tomocube company, HT-2H product. (Accessed: 2024) https://tomocube.com/tomocube/view/products/product_2h

    無法下載圖示 本全文未授權公開
    QR CODE