簡易檢索 / 詳目顯示

研究生: 蔡辰杰
Tsai, Chen-Jie
論文名稱: 使用腦磁圖儀探討文組及理組對大腦活化反應特性之研究
Exploring the Characteristics of Brain Activation Response in Humanities and Science Majors Using Magnetoencephalography
指導教授: 廖書賢
Liao, Shu-Hsien
口試委員: 廖書賢
Liao, Shu-Hsien
陳坤麟
Chen, Kun-Lin
王立民
Wang, Li-Min
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 69
中文關鍵詞: 腦磁圖腦波文科生與理科生
英文關鍵詞: Magnetoencephalography, brainwaves, arts students and science students
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401415
論文種類: 學術論文
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 viii 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 4 第二章 實驗原理 6 2.1 腦磁圖儀系統 6 2.1.1 MEG的工作原理 6 2.1.2 MEG優點與應用 8 2.2大腦皮質介紹 9 2.3文組與理組(數學與中文)之相關大腦腦區 11 第三章 實驗設計 12 3.1腦磁圖儀與核磁共振造影儀 12 3.2受試者 14 3.3頭部座標定位系統 16 3.4實驗流程設計 20 3.5數據分析方法與流程 25 3.5.1獨立成分分析 (Independent Component Analysis, ICA) 25 3.5.2 前向模型 (forward models) 和源空間 (source spaces) 26 3.5.3 連續數據時段切割(epoch time)與事件觸發(event trigger) 29 3.5.4 源估計STC (Source Time Courses) 30 3.6 T-test P-Value 與 大腦source平均差 31 第四章 數據分析與結果討論 32 4.1行為數據 32 4.2大腦活化源區域 34 4.3大腦source平均差 36 4.4大腦TTest P-Value 43 4.4.1中文活化強度大於數學的大腦活化比較 (P-Value<0.01與P-Value<0.05) 45 4.4.2數學活化強度大於中文的大腦活化比較 (P-Value<0.01與P-Value<0.05) 52 4.5大腦對於文組及理組的大腦活化區域相似度百分比 59 第五章 結論與未來展望 62 參考文獻 65

    [1] Tierney, A. L., & Nelson III, C. A. (2009). Brain development and the role of experience in the early years. Zero to three, 30(2), 9.
    [2] Wang, Y., Lin, L., Kuhl, P., & Hirsch, J. (2007). Mathematical and linguistic processing differs between native and second languages: An fMRI study. Brain Imaging and Behavior, 1, 68-82.
    [3] Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J., ... & Fox, P. T. (2000). Brain activation in the processing of Chinese characters and words: a functional MRI study. Human brain mapping, 10(1), 16-27.
    [4] Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern Physics, 65(2), 413.
    [5] Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., ... & Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657-661.
    [6] Yamamoto, T., Williamson, S. J., Kaufman, L., Nicholson, C., & Llinas, R. (1988). Magnetic localization of neuronal activity in the human brain. Proceedings of the National Academy of Sciences, 85(22), 8732-8736.
    [7] Wieser, H. G. (1998). Epilepsy surgery: past, present and future. Seizure, 7(3), 173-184.
    [8] Gallen, C. C., Hirschkoff, E. C., & Buchanan, D. S. (1995). Magnetoencephalography and magnetic source imaging. Capabilities and limitations. Neuroimaging Clinics of North America, 5(2), 227-249.
    [9] Wikswo Jr, J. P., Gevins, A., & Williamson, S. J. (1993). The future of the EEG and MEG. Electroencephalography and clinical Neurophysiology, 87(1), 1-9.
    [10] Dockstader, C., Gaetz, W., Cheyne, D., Wang, F., Castellanos, F. X., & Tannock, R. (2008). MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD. Behavioral and Brain Functions, 4, 1-13.
    [11] Fred, A. L., Kumar, S. N., Kumar Haridhas, A., Ghosh, S., Purushothaman Bhuvana, H., Sim, W. K. J., ... & Gulyás, B. (2022). A brief introduction to magnetoencephalography (MEG) and its clinical applications. Brain sciences, 12(6), 788.
    [12] Fagaly, R. L. (2006). Superconducting quantum interference device instruments and applications. Review of scientific instruments, 77(10).
    [13] López, M. E., Garcés, P., Cuesta, P., Castellanos, N. P., Aurtenetxe, S., Bajo, R., ... & Maestú, F. (2014). Synchronization during an internally directed cognitive state in healthy aging and mild cognitive impairment: a MEG study. Age, 36, 1389-1406.
    [14] Awan, F. G., Saleem, O., & Kiran, A. (2019). Recent trends and advances in solving the inverse problem for EEG source localization. Inverse Problems in Science and Engineering, 27(11), 1521-1536.
    [15] Brain Issues ,[online],in: https://www.nf2is.org/brain_matter.php
    [16] Jawabri, K. H., & Sharma, S. (2019). Physiology, cerebral cortex functions.
    [17] BrainFrame Psychology for Kids: Education BRAIN LOBES ,[online],in: https://www.brainframe-kids.com/brain/facts-lobes.htm
    [18] Care Online – Brain Anatomy Secrets,[online],in:https://www.careonline.com.tw/2019/01/brain.html
    [19] PanSci - New discoveries about brain neurons ,[online],in: https://pansci.asia/archives/149090
    [20] Brown, A. G. (2001). Nerve cells and nervous systems: an introduction to neuroscience. Springer Science & Business Media.
    [21] Park, J., Park, D. C., & Polk, T. A. (2013). Parietal functional connectivity in numerical cognition. Cerebral Cortex, 23(9), 2127-2135.
    [22] Bulletin of Educational Psychology, 2012, 43(4), 805-832 National Taiwan Normal University, Taipei, Taiwan, R.O.C.
    [23] How are the different head and MRI coordinate systems defined? ,[online],in:
    https://www.fieldtriptoolbox.org/faq/coordsys/
    [24] Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroinformatics, 7, 267.
    [25] Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical neurophysiology, 111(10), 1745-1758.
    [26] Liu, Y. J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., ... & Saez, A. (2011). Recent advances and emerging applications of the boundary element method. Applied Mechanics Reviews, 64(3), 030802.
    [27] Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., ... & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of neuroengineering and rehabilitation, 5, 1-33.
    [28] So, H. C. (2011). Source localization: Algorithms and analysis. Handbook of Position Location: Theory, Practice, and Advances, 25-66.
    [29] Kim, T. K. (2015). T test as a parametric statistic. Korean journal of anesthesiology, 68(6), 540-546.
    [30] Arsalidou, M., & Taylor, M. J. (2011). Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382-2393.
    [31] Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in cognitive sciences, 17(1), 26-49.
    [32] SMALLCOLLATION(Brodmann’sareas),[online],in:https://smallcollation.blogspot.com/2013/05/Brod manns-areas.html#gsc.tab=0
    [33] Wilkey, E. D., Barone, J. C., Mazzocco, M. M., Vogel, S. E., & Price, G. R. (2017). The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency. NeuroImage, 159, 430-442.
    [34] Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909-4917.
    [35] Bajada, C. J., Jackson, R. L., Haroon, H. A., Azadbakht, H., Parker, G. J., Ralph, M. A. L., & Cloutman, L. L. (2017). A graded tractographic parcellation of the temporal lobe. NeuroImage, 155, 503-512.
    [36] Papanicolaou, A. C., Pazo-Alvarez, P., Castillo, E. M., Billingsley-Marshall, R. L., Breier, J. I., Swank, P. R., ... & Passaro, A. D. (2006). Functional neuroimaging with MEG: normative language
    [37] Bracci, S., & Op de Beeck, H. P. (2023). Understanding human object vision: a picture is worth a thousand representations. Annual review of psychology, 74(1), 113-135.
    [38] Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. Neuroimage, 61(4), 1444-1460.
    [39] Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., ... & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. science, 330(6009), 1359-1364.
    [40] Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970-974.
    [41] Naya, Y. (2016). Declarative association in the perirhinal cortex. Neuroscience research, 113, 12-18.
    [42] Bernal, B., & Ardila, A. (2016). From hearing sounds to recognizing phonemes: Primary auditory cortex is a truly perceptual language area. AIMS Neuroscience, 3(4), 454-473.
    [43] Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical journal, 12(1), 1-24.
    [44] Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience & biobehavioral reviews, 33(7), 975-980.
    [45] Lin, Y. H., Dadario, N. B., Hormovas, J., Young, I. M., Briggs, R. G., MacKenzie, A. E., ... & Sughrue, M. E. (2021). Anatomy and white matter connections of the superior parietal lobule. Operative Neurosurgery, 21(3), E199-E214.
    [46] Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009). Supramarginal gyrus involvement in visual word recognition. Cortex, 45(9), 1091-1096.
    [47] Amalric, M., Denghien, I., & Dehaene, S. (2018). On the role of visual experience in mathematical development: Evidence from blind mathematicians. Developmental cognitive neuroscience, 30, 314-323.
    [48] Simon, O., Kherif, F., Flandin, G., Poline, J. B., Riviere, D., Mangin, J. F., ... & Dehaene, S. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. Neuroimage, 23(3), 1192-1202.

    無法下載圖示 本全文未授權公開
    QR CODE