簡易檢索 / 詳目顯示

研究生: 張清淵
Chang, Ching-Yuan
論文名稱: 結合光譜平滑化技術的廢紡分類辨識系統設計與實現
Design and Implementation of a Waste Textile Classification and Identification System Based on Spectral Smoothing Techniques
指導教授: 謝振傑
Chieh, Jen-Jie
口試委員: 謝振傑
Chieh, Jen-Jie
廖書賢
Liao,Shu-Hsien
吳晉晟
Wu, Chin-Cheng
口試日期: 2025/01/14
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 64
中文關鍵詞: 環境社會治理NIR近紅外光譜三次樣條插值法主成分分析支持向量機Python
英文關鍵詞: ESG, NIR Spectroscopy, Cubic Spline, PCA, SVM, Python
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球環境保護(Environmental)、社會責任(Social)與公司治理(Governance, ESG)議題的重要性日益提升,紡織品的回收和再利用成為了紡織產業中極具挑戰性和急需解決的問題之一。實驗室專注於回收具經濟價值的紡織材料,包括聚酯纖維(Polyester)、尼龍(Nylon)、棉(Cotton)以及聚酯纖維與棉的混紡物。以往的材料鑑別主要依賴於化學分析技術,該方法耗時且可能對環境造成影響。因此,開發一種快速、環保且非破壞性的材料辨識方法具有重要意義。本研究構建了一基於近紅外光譜儀(NIR)及Linux系統架構的紡織品回收系統,用於廢紡材料的分類辨識。然而,由於測量環境的光場變化,其光譜量測結果存在差異,影響系統定量分析穩定性。因此本研究引入Cubic Spline(三次樣條)數據平滑化技術,將光譜解析度由10 nm提升至1 nm,增強光譜數據的細節。同時,結合標準參照與校正方法,使用五種反射強度參照標準(100%、99%、75%、50%、2%反射率)進行光譜校正,使用Python進行了數據分析與處理,將絕對強度轉換為相對強度,以消除環境光場變化對測量的影響。此外,吾人結合主成分分析(PCA)來提取光譜數據的主要特徵,並採用支持向量機(SVM)進行分類模型的建立。這些技術有效地提升了系統的穩定性和分類精度。同時標準參照與校正方法有效地校正了不同環境下的光譜偏差,提升了測量結果的一致性。實驗結果顯示,經處理後的光譜數據在樣品分類辨識中取得了較高的準確率透過這些步驟,吾人旨在對衣物的材質進行定性分析並同時在混紡類別中以定量分析進行精準識別。本研究成功設計並實現了一套結合光譜平滑化技術的廢紡分類辨識系統。這一過程對於材料鑑定和化學分析提供了重要的基礎,使吾人能夠更有效地處理和回收紡織品。通過Cubic Spline數據平滑化和標準參照校正,系統的穩定性和辨識準確性得到了顯著提升。未來將進一步優化光譜數據處理算法,並引入機器學習模型,同時,計劃拓展系統對其他紡織材料的適用性,為紡織品回收再利用提供更全面的技術支持。

    With the growing importance of Environmental, Social, and Governance (ESG) issues, textile recycling and reuse have emerged as one of the most challenging and urgent problems in the textile industry. This study focuses on recycling economically valuable textile materials, including polyester, nylon, cotton, and polyester-cotton blends. Traditionally, material identification has relied heavily on chemical analysis techniques, which are time-consuming and potentially harmful to the environment. Therefore, developing a rapid, eco-friendly, and non-destructive method for material identification is of great significance.In this research, we developed a textile recycling system based on Near-Infrared (NIR) spectroscopy and a Linux-based architecture for the classification and identification of waste textiles. However, variations in the light field of the measurement environment introduced inconsistencies in spectral measurements, affecting the stability of the system’s quantitative analysis. To address this issue, the study introduced Cubic Spline interpolation for spectral smoothing, improving the spectral resolution from 10 nm to 1 nm, enhancing the detail of spectral data. Additionally, a calibration method using five reference reflectance standards (100%, 99%, 75%, 50%, and 2% reflectance) was employed to convert absolute intensity to relative intensity, data analysis and processing were conducted using Python, mitigating the impact of environmental light field changes on measurements.Furthermore, Principal Component Analysis (PCA) was used to extract key features from the spectral data, and a Support Vector Machine (SVM) was employed to build the classification model. These techniques effectively improved system stability and classification accuracy. The calibration method also successfully corrected spectral deviations caused by varying environmental conditions, enhancing the consistency of measurement results. Experimental results showed that the processed spectral data achieved high accuracy in sample classification and identification.This research successfully designed and implemented a textile classification and identification system that incorporates spectral smoothing techniques. This process provides a solid foundation for material identification and chemical analysis, enabling more efficient handling and recycling of textiles. The use of Cubic Spline smoothing and reference calibration significantly improved the system’s stability and identification accuracy. Future work will focus on further optimizing spectral data processing algorithms and incorporating more advanced machine learning models to enhance the system’s automation and classification efficiency. Additionally, plans to expand the system's applicability to other textile materials will provide more comprehensive technical support for textile recycling and reuse.

    第一章、 緒論1 1-1 ESG背景簡介與淨零碳排目標 1 1-2 紡織到紡織(Textile to Textile)與循環經濟 3 1-3 研究目的與動機 5 1-4以機器學習演算法將現有廢紡分類辨識最佳化 6 1-5 文獻回顧與探討 7 第二章、 研究原理與設計 11 2-1 近紅外光譜技術的原理與應用 11 2-2 光譜數據預處理 12 2-2-1比爾-朗伯定律(Beer–Lambert law) 13 2-2-2數據歸一化(Normalization) 14 2-3 簡介Cubic Spline樣條插值法 15 2-3-1樣條函數的特性 15 2-3-2線性插值與三次樣條插值 16 2-4 Cubic Spline於量測光譜之應用 17 2- 5 實驗架構設計 21 第三章、 實驗成果與數據分析整合 29 3-1 標準校正光譜與樣布光譜 29 3-2 以Cubic Spline處理光譜與模型建立過程 44 3-2-1 辨識模型建立 45 3-3 量測初步成果 48 3-3-1混紡比例與光譜變化關係 53 3-4 以Cubic Spline 校正光譜偏移 55 3-4-1光譜易混淆類別之判讀依據 56 第四章、 未來與展望 60 參考文獻 62 附錄一、使用工具 64

    劉怡良(2023)。ESG、SDGs對企業社會責任及公司治理影響之研究。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/762h7t。
    Manshoven, S., Christis, M., Vercalsteren, A., Arnold, M., Nicolau, M., Lafond, E., & Mortensen, L. F. (2019). Textiles and the environment in a circular economy. European Environment Agency.
    Bocken, N. M. P., Short, S. W., Rana, P., & Evans, S. (2022). A framework of circular business models for fashion and textiles. Sustainability, 14(12), Article 7083.
    Kulakova, I. (2018). The impact of Environmental, Social and Corporate Governance (ESG) practices on the financial performance of companies in emerging and frontier markets (Master's thesis, TRITA-ITM-EX 2018:742, KTH Industrial Engineering and Management, Industrial Management, SE-100 44 Stockholm).
    Gauthier, J., Wu, Q.V. & Gooley, T.A. (2020). Cubic splines to model relationships be-tween continuous variables and outcomes: a guide for clinicians. Bone Marrow Trans-plant 55, 675–680. https://doi.org/10.1038/s41409-019-0679-x
    Pedroso, L., Arco, A., Figueiras, I., Araújo dos Santos, J. V., Fernandes, J. L. M., & Lopes, H. (2021). Application of cubic spline interpolation with optimal spatial sampling for damage identification. Structural Control and Health Monitoring, 28(1), e2856. https://doi.org/10.1002/stc.2856
    Ciurczak, E. W., & Drennen, J. K. (2019). Breakthrough potential in near-infrared spec-troscopy. Frontiers in Chemistry, 7, Article 48.
    Ghosh, S., & Raghavendra, A. S. (2020). Near-infrared spectroscopy in bio-applications: A critical overview. Biosensors, 10(6), 76.
    Alamu, E. O., Nuwamanya, E., Cornet, D., Meghar, K., Adesokan, M., Tran, T., Belalca-zar, J., Desfontaines, L., & Davrieux, F. (2021). Near-infrared spectroscopy applications for high-throughput phenotyping for cassava and yam: A review. International journal of food science & technology, 56(3), 1491–1501. https://doi.org/10.1111/ijfs.14773
    Riba, Jordi-Roger, Rosa Cantero, Pol Riba-Mosoll, and Rita Puig. (2022). "Post-Consumer Textile Waste Classification through Near-Infrared Spectroscopy, Using an Advanced Deep Learning Approach" Polymers 14, no. 12: 2475.
    Paz, Maria Luís, and Clara Sousa. (2024). "Discrimination and Quantification of Cotton and Polyester Textile Samples Using Near-Infrared and Mid-Infrared Spectroscopies" Molecules 29, no. 15: 3667. https://doi.org/10.3390/molecules29153667
    Delaney, J. K., & Reddy, M. M. (2021). Non-invasive identification of textile fibres us-ing near-infrared fibre optics reflectance spectroscopy and multivariate classification techniques. European Physical Journal Plus, 136(9), Article 1067.
    Sun, X., Yuan, H., Song, C., Li, X., Hu, A., Yu, S., & Ren, Z. (2019). A novel drying-free identification method of cashmere textiles by NIR spectroscopy combined with an adaptive representation learning classification method. Talanta, 204, 1-8.
    Jing Tang Xing, Fluid-Solid Interaction Dynamics. (2019). Mixed finite element—smoothed particle methods for nonlinear fluid–solid interactions. 409-485.
    Cura, K., Rintala, N., Kamppuri, T., Saarimäki, E., & Heikkilä, P. (2021). Textile recogni-tion and sorting for recycling at an automated line using near infrared spectroscopy. Re-cycling, 6(1), 11.
    Kuo, C. H., & Chen, Y. H. (2023). Application of near-infrared spectroscopy and CNN-TCN for the classification and identification of foreign fibers in cotton layers. Journal of Applied Polymer Science, 140(15), e51729. https://doi.org/10.1002/app.51729
    Möller, K., & Henniges, U. (2023). A review of recent near infrared research for wood and paper: Implications for textile applications. Journal of Wood Science, 69(1), 1-12.

    無法下載圖示 本全文未授權公開
    QR CODE